Do you want to publish a course? Click here

Sorting out quenched jets

83   0   0.0 ( 0 )
 Added by Jasmine Brewer
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a new quantile analysis strategy to study the modification of jets as they traverse through a droplet of quark-gluon plasma. To date, most jet modification studies have been based on comparing the jet properties measured in heavy-ion collisions to a proton-proton baseline at the same reconstructed jet transverse momentum ($p_T$). It is well known, however, that the quenching of jets from their interaction with the medium leads to a migration of jets from higher to lower $p_T$, making it challenging to directly infer the degree and mechanism of jet energy loss. Our proposed quantile matching procedure is inspired by (but not reliant on) the approximate monotonicity of energy loss in the jet $p_T$. In this strategy, jets in heavy-ion collisions ordered by $p_T$ are viewed as modifi



rate research

Read More

The transverse momentum spectra of different types of particles produced in central and peripheral gold-gold (Au-Au) and (inelastic) proton-proton ($pp$) collisions at the Relativistic Heavy Ion Collider (RHIC), as well as in central and peripheral lead-lead (Pb-Pb) and $pp$ collisions at the Large Hadron Collider (LHC) are analyzed by the standard distribution in terms of multi-component. The obtained results from the standard distribution give an approximate agreement with the measured experimental data by the STAR, PHENIX and ALICE Collaborations. The methodical behavior of the effective (kinetic freeze-out) temperature, transverse flow velocity and kinetic freeze-out volume with the mass dependence for different particles is obtained, which observes the early kinetic freeze-out of heavier particles as compared to the lighter particles. The parameters for emissions of different particles are observed to be different, which reveals a direct signature of the mass dependent differential kinetic freeze-out. It is also observed that the peripheral nucleus-nucleus ($AA$) and $pp$ collisions at the same center-of-mass energy per nucleon pair are close in terms of the extracted parameters.
We present the transverse momentum spectrum of groomed jets in di-jet events for $e^+e^-$ collisions and semi-inclusive deep inelastic scattering (SIDIS). The jets are groomed using a soft-drop grooming algorithm which helps in mitigating effects of non-global logarithms and underlying event. At the same time, by reducing the final state hadronization effects, it provides a clean access to the non-perturbative part of the evolution of transverse momentum dependent (TMD) distributions. In SIDIS experiments we look at the transverse momentum of the groomed jet measured w.r.t. the incoming hadron in the Breit frame. Because the final state hadronization effects are significantly reduced, the SIDIS case allows to probe the TMD parton distribution functions. We discuss the sources of non-perturbative effects in the low transverse momentum region including novel (but small) effects that arise due to grooming. We derive a factorization theorem within SCET and resum any large logarithm in the measured transverse momentum up to NNLL accuracy using the $zeta$-prescription as implemented in the artemide package and provide a comparison with simulations.
We present results on Zjj production via double parton scattering in pA collisions at the LHC. We perform the analysis at leading and next-leading order accuracy with different sets of cuts on jet transverse momenta and accounting for the single parton scattering background. By exploiting the experimental capability to measure the centrality dependence of the cross section, we discuss the feasibility of DPS observation in already collected data at the LHC and in future runs.
We analyse the transverse momentum ($p_{rm T}$)-spectra as a function of charged-particle multiplicity at midrapidity ($|y| < 0.5$) for various identified particles such as $pi^{pm}$, $K^{pm}$, $K_S^0$, $p+overline{p}$, $phi$, $K^{*0} + overline {K^{*0}}$, and $Lambda$ + $bar{Lambda}$ in proton-proton collisions at $sqrt{s}$ = 7 TeV using Boltzmann-Gibbs Blast Wave (BGBW) model and thermodynamically consistent Tsallis distribution function. We obtain the multiplicity dependent kinetic freeze-out temperature ($T_{rm kin}$) and radial flow ($beta$) of various particles after fitting the $p_{rm T}$-distribution with BGBW model. Here, $T_{rm kin}$ exhibits mild dependence on multiplicity class while $beta$ shows almost independent behaviour. The information regarding Tsallis temperature and the non-extensivity parameter ($q$) are drawn by fitting the $p_{rm T}$-spectra with Tsallis distribution function. The extracted parameters of these particles are studied as a function of charged particle multiplicity density ($dN_{ch}/deta$). In addition to this, we also study these parameters as a function of particle mass to observe any possible mass ordering. All the identified hadrons show a mass ordering in temperature, non-extensive parameter and also a strong dependence on multiplicity classes, except the lighter particles. It is observed that as the particle multiplicity increases, the $q$-parameter approaches to Boltzmann-Gibbs value, hence a conclusion can be drawn that system tends to thermal equilibrium. The observations are consistent with a differential freeze-out scenario of the produced particles.
The transverse momentum (mass) spectra of the multi-strange and non-multi-strange (i.e. other identified) particles in central gold-gold (Au-Au), lead-lead (Pb-Pb), argon-muriate (Ar-KCl) and nickel-nickel (Ni-Ni) collisions over a wide energy range have been studied in this work. The experimental data measured by various collaborations have been analyzed. The blast-wave fit with Tsallis statistics is used to extract the kinetic freeze-out temperature and transverse flow velocity from the experimental data of transverse momentum (mass) spectra. The extracted parameters increase with the increase of collision energy and appear with the trend of saturation at the Beam Energy Scan (BES) energies at the Relativistic Heavy Ion Collider (RHIC). This saturation implies that the onset energy of phase transition of partial deconfinement is 7.7 GeV and that of whole deconfinement is 39 GeV. Furthermore, the energy scan/dependence of kinetic freeze-out scenarios are observed for the multi-strange and other identified particles, though the multiple freeze-out scenarios are also observed for various particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا