No Arabic abstract
We study Bell scenarios with binary outcomes supplemented by one bit of classical communication. We develop a method to find facet inequalities for such scenarios even when direct facet enumeration is not possible, or at least difficult. Using this method, we partially solve the scenario where Alice and Bob choose between three inputs, finding a total of 668 inequivalent facet inequalities (with respect to relabelings of inputs and outputs). We also show that some of these inequalities are constructed from the facet inequalities found in scenarios without communication, the well known Bell inequalities.
The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say that a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution. Upper and (almost) tight lower bounds have been given for the quantum violation of these Bell inequalities in terms of number of outputs of the distribution, number of inputs, and the dimension of the shared quantum states. In this work, we revisit normalized Bell inequalities together with another family: inefficiency-resistant Bell inequalities. To be inefficiency-resistant, the Bell value must not exceed 1 for any local distribution, including those that can abort. This makes the Bell inequality resistant to the detection loophole, while a normalized Bell inequality is resistant to general local noise. Both these families of Bell inequalities are closely related to communication complexity lower bounds. We show how to derive large violations from any gap between classical and quantum communication complexity, provided the lower bound on classical communication is proven using these lower bound techniques. This leads to inefficiency-resistant violations that can be exponential in the size of the inputs. Finally, we study resistance to noise and inefficiency for these Bell inequalities.
Classical and quantum physics provide fundamentally different predictions about experiments with separate observers that do not communicate, a phenomenon known as quantum nonlocality. This insight is a key element of our present understanding of quantum physics, and also enables a number of information processing protocols with security beyond what is classically attainable. Relaxing the pivotal assumption of no communication leads to new insights into the nature quantum correlations, and may enable new applications where security can be established under less strict assumptions. Here, we study such relaxations where different forms of communication are allowed. We consider communication of inputs, outputs, and of a message between the parties. Using several measures, we study how much communication is required for classical models to reproduce quantum or general no-signalling correlations, as well as how quantum models can be augmented with classical communication to reproduce no-signalling correlations.
A technique, which we call homogenization, is applied to transform CH-type Bell inequalities, which contain lower order correlations, into CHSH-type Bell inequalities, which are defined for highest order correlation functions. A homogenization leads to inequalities involving more settings, that is a choice of one more observable is possible for each party. We show that this technique preserves the tightness of Bell inequalities: a homogenization of a tight CH-type Bell inequality is still a tight CHSH-type Bell inequality. As an example we obtain $3times3times3$ CHSH-type Bell inequalities by homogenization of $2times 2times 2$ CH-type Bell inequalities derived by Sliwa in [Phys. Lett. A {bf 317}, 165 (2003)].
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanical (Tsirelson) bounds for a given Bell inequality in a general scenario is a difficult task which rarely leads to closed-form solutions. Here we introduce a new class of Bell inequalities based on products of correlators that alleviate these issues. Each such Bell inequality is associated with a unique coordination game. In the simplest case, Alice and Bob, each having two random variables, attempt to maximize the area of a rectangle and the rectangles area is represented by a certain parameter. This parameter, which is a function of the correlations between their random variables, is shown to be a Bell parameter, i.e. the achievable bound using only classical correlations is strictly smaller than the achievable bound using non-local quantum correlations We continue by generalizing to the case in which Alice and Bob, each having now n random variables, wish to maximize a certain volume in n-dimensional space. We term this parameter a multiplicative Bell parameter and prove its Tsirelson bound. Finally, we investigate the case of local hidden variables and show that for any deterministic strategy of one of the players the Bell parameter is a harmonic function whose maximum approaches the Tsirelson bound as the number of measurement devices increases. Some theoretical and experimental implications of these results are discussed.
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their nonlinearity; this has nontrivial consequences for the derivation of their local bound, which is not reached by deterministic local correlations. For our simplest inequality, we derive analytically tight bounds for both local and quantum correlations. An interesting application of covariance Bell inequalities is that they can act as shared randomness witnesses: specifically, the value of the Bell expression gives device-independent lower bounds on both the dimension and the entropy of the shared random variable in a local model.