Do you want to publish a course? Click here

Tree-structured Kronecker Convolutional Network for Semantic Segmentation

166   0   0.0 ( 0 )
 Added by Tianyi Wu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Most existing semantic segmentation methods employ atrous convolution to enlarge the receptive field of filters, but neglect partial information. To tackle this issue, we firstly propose a novel Kronecker convolution which adopts Kronecker product to expand the standard convolutional kernel for taking into account the partial feature neglected by atrous convolutions. Therefore, it can capture partial information and enlarge the receptive field of filters simultaneously without introducing extra parameters. Secondly, we propose Tree-structured Feature Aggregation (TFA) module which follows a recursive rule to expand and forms a hierarchical structure. Thus, it can naturally learn representations of multi-scale objects and encode hierarchical contextual information in complex scenes. Finally, we design Tree-structured Kronecker Convolutional Networks (TKCN) which employs Kronecker convolution and TFA module. Extensive experiments on three datasets, PASCAL VOC 2012, PASCAL-Context and Cityscapes, verify the effectiveness of our proposed approach. We make the code and the trained model publicly available at https://github.com/wutianyiRosun/TKCN.



rate research

Read More

176 - He Wen , Shuchang Zhou , Zhe Liang 2016
Fully convolutional neural networks give accurate, per-pixel prediction for input images and have applications like semantic segmentation. However, a typical FCN usually requires lots of floating point computation and large run-time memory, which effectively limits its usability. We propose a method to train Bit Fully Convolution Network (BFCN), a fully convolutional neural network that has low bit-width weights and activations. Because most of its computation-intensive convolutions are accomplished between low bit-width numbers, a BFCN can be accelerated by an efficient bit-convolution implementation. On CPU, the dot product operation between two bit vectors can be reduced to bitwise operations and popcounts, which can offer much higher throughput than 32-bit multiplications and additions. To validate the effectiveness of BFCN, we conduct experiments on the PASCAL VOC 2012 semantic segmentation task and Cityscapes. Our BFCN with 1-bit weights and 2-bit activations, which runs 7.8x faster on CPU or requires less than 1% resources on FPGA, can achieve comparable performance as the 32-bit counterpart.
Recently, learning-based image synthesis has enabled to generate high-resolution images, either applying popular adversarial training or a powerful perceptual loss. However, it remains challenging to successfully leverage synthetic data for improving semantic segmentation with additional synthetic images. Therefore, we suggest to generate intermediate convolutional features and propose the first synthesis approach that is catered to such intermediate convolutional features. This allows us to generate new features from label masks and include them successfully into the training procedure in order to improve the performance of semantic segmentation. Experimental results and analysis on two challenging datasets Cityscapes and ADE20K show that our generated feature improves performance on segmentation tasks.
Semantic concept hierarchy is still under-explored for semantic segmentation due to the inefficiency and complicated optimization of incorporating structural inference into dense prediction. This lack of modeling semantic correlations also makes prior works must tune highly-specified models for each task due to the label discrepancy across datasets. It severely limits the generalization capability of segmentation models for open set concept vocabulary and annotation utilization. In this paper, we propose a Dynamic-Structured Semantic Propagation Network (DSSPN) that builds a semantic neuron graph by explicitly incorporating the semantic concept hierarchy into network construction. Each neuron represents the instantiated module for recognizing a specific type of entity such as a super-class (e.g. food) or a specific concept (e.g. pizza). During training, DSSPN performs the dynamic-structured neuron computation graph by only activating a sub-graph of neurons for each image in a principled way. A dense semantic-enhanced neural block is proposed to propagate the learned knowledge of all ancestor neurons into each fine-grained child neuron for feature evolving. Another merit of such semantic explainable structure is the ability of learning a unified model concurrently on diverse datasets by selectively activating different neuron sub-graphs for each annotation at each step. Extensive experiments on four public semantic segmentation datasets (i.e. ADE20K, COCO-Stuff, Cityscape and Mapillary) demonstrate the superiority of our DSSPN over state-of-the-art segmentation models. Moreoever, we demonstrate a universal segmentation model that is jointly trained on diverse datasets can surpass the performance of the common fine-tuning scheme for exploiting multiple domain knowledge.
Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and visual quality.
130 - Haitong Tang , Shuang He , Xia Lu 2021
It is a challenging task to accurately perform semantic segmentation due to the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep learning insufficiently captured the semantic and appearance information of images, which put limit on their generality and robustness for various application scenes. In this paper, we proposed a novel strategy that reformulated the popularly-used convolution operation to multi-layer convolutional sparse coding block to ease the aforementioned deficiency. This strategy can be possibly used to significantly improve the segmentation performance of any semantic segmentation model that involves convolutional operations. To prove the effectiveness of our idea, we chose the widely-used U-Net model for the demonstration purpose, and we designed CSC-Unet model series based on U-Net. Through extensive analysis and experiments, we provided credible evidence showing that the multi-layer convolutional sparse coding block enables semantic segmentation model to converge faster, can extract finer semantic and appearance information of images, and improve the ability to recover spatial detail information. The best CSC-Unet model significantly outperforms the results of the original U-Net on three public datasets with different scenarios, i.e., 87.14% vs. 84.71% on DeepCrack dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs. 48.82% on CamVid dataset, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا