Do you want to publish a course? Click here

Charmed baryons in nuclear matter

164   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the temperature and baryon density dependence of the masses of the lightest charmed baryons $Lambda_c$, $Sigma_c$ and $Sigma^*_c$. We also look at the effects of the temperature and baryon density on the binding energies of the $Lambda_c N$ and $Lambda_c Lambda_c$ systems. Baryon masses and baryon-baryon interactions are evaluated within a chiral constituent quark model. Medium effects are incorporated in those parameters of the model related to the dynamical breaking of chiral symmetry, which are the masses of the constituent quarks, the $sigma$ and $pi$ meson masses, and quark-meson couplings. We find that while the in-medium $Lambda_c$ mass decreases monotonically with temperature, those of $Sigma_c$ and $Sigma^*_c$ have a nonmonotonic dependence. These features can be understood in terms of a simple group theory analysis regarding the one-gluon exchange interaction in those hadrons. The in-medium $Lambda_c N$ and $Lambda_c Lambda_c$ interactions are governed by a delicate balance involving a stronger attraction due to the decrease of the $sigma$ meson mass, suppression of coupled-channel effects and lower thresholds, leading to shallow bound states with binding energies of a few~MeV. The $Lambda_c$ baryon could possibly be bound to a large nucleus, in qualitative agreement with results based on relativistic mean field models or QCD sum rules. Ongoing experiments at RHIC or LHCb or the planned ones at FAIR and J-PARC may take advantage of the present results.

rate research

Read More

Both unitary chiral theories and lattice QCD simulations show that the $DK$ interaction is attractive and can form a bound state, namely, $D^*_{s0}(2317)$. Assuming the validity of the heavy antiquark-diquark symmetry (HADS), the $Xi_{cc}bar{K}$ interaction is the same as the $DK$ interaction, which implies the existence of a $Xi_{cc}bar{K}$ bound state with a binding energy of $49-64$ MeV. In this work, we study whether a $Xi_{cc}Xi_{cc}bar{K}$ three-body system binds. The $Xi_{cc}Xi_{cc}$ interaction is described by exchanging $pi$, $sigma$, $rho$, and $omega$ mesons, with the corresponding couplings related to those of the $NN$ interaction via the quark model. We indeed find a $Xi_{cc}Xi_{cc}bar{K}$ bound state, with quantum numbers $J^P=0^-$, $I=frac{1}{2}$, $S=1$ and $C=4$, and a binding energy of $80-118$ MeV. It is interesting to note that this system is very similar to the well-known $NNbar{K}$ system, which has been studied extensively both theoretically and experimentally. Within the same framework, we show the existence of a $NNbar{K}$ state with a binding energy of $35-43$ MeV, consistent with the results of other theoretical works and experimental data, which serves as a consistency check on the predicted $Xi_{cc}Xi_{cc}bar{K}$ bound state.
There has been important experimental progress in the sector of heavy baryons in the past several years. We study the strong decays of the S-wave, P-wave, D-wave and radially excited charmed baryons using the $^3P_0$ model. After comparing the calcul ated decay pattern and total width with the available data, we discuss the possible internal structure and quantum numbers of those charmed baryons observed recently.
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3) symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analysed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)X O(3) symmetry. Various spin dependent energy splittings between the extracted states are also evaluated.
We investigate the electromagnetic transitions of the singly charmed baryons with spin 3/2, based on a pion mean-field approach, also known as the chiral quark-soliton model, taking into account the rotational $1/N_c$ corrections and the effects of flavor SU(3) symmetry breaking. We examine the valence- and sea-quark contributions to the electromagnetic transition form factors and find that the quadrupole form factors of the sea-quark contributions dominate over those of the valence-quark ones in the smaller $Q^2$ region, whereas the sea quarks only provide marginal contributions to the magnetic dipole transition form factors of the baryon sextet with spin 3/2. The effects of the flavor SU(3) symmetry breaking are in general very small except for the forbidden transition $Xi_c^0gammato Xi_c^{*0}$ by $U$-spin symmetry. We also discuss the widths of the radiative decays for the baryon sextet with spin 3/2, comparing the present results with those from other works.
60 - Keh-Fei Liu 2016
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $pi N sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا