Do you want to publish a course? Click here

Noise investigation of a dual-frequency VECSEL for application to Cesium clocks

166   0   0.0 ( 0 )
 Added by Fabien Bretenaker
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically and experimentally study the noise of a class-A dual-frequency vertical external cavity surface emitting laser operating at Cesium clock wavelength. The intensity noises of the two orthogonally polarized modes and the phase noise of their beatnote are investigated. The intensity noises of the two modes and their correlations are well predicted by a theory based on coupled rate equations. The phase noise of the beatnote is well described by considering both thermal effects and the effect of phase-amplitude coupling. The good agreement between theory and experiment indicates possible ways to further decrease the laser noises.



rate research

Read More

We report the implementation and performance of a double servo-loop for intensity and phase-difference active stabilization of a dual-frequency vertical external--cavity surface-emitting laser (DF-VECSEL) for coherent population trapping (CPT) of cesium atoms in the framework of compact atomic clocks. In--phase fully correlated pumping of the two laser modes is identified as the best scheme for intensity noise reduction, and an analytical model allows the optimization of the active stabilization strategy. Optical phase-locking the beat-note to a local oscillator leads to a phase noise level below -103~dBc/Hz at 100~Hz from the carrier. The laser contribution to the short-term frequency stability of the clock is predicted to be compatible with a targeted Allan deviation below $sigma_y = 5,times 10^{-13}$ over one second.
We report a fully-correlated multi-mode pumping architecture optimized for dramatic noise reduction of a class-A dual-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). Thanks to amplitude division of a laser diode, the two orthogonally polarized modes emitted by the VECSEL oscillating at 852 nm are separately pumped by two beams exhibiting fully in--phase correlated intensity noises. This is shown to lead to very strong and in-phase correlations between the two lasing modes intensities. As a result, the phase noise power spectral density of the RF beat note generated by the two modes undergoes a drastic reduction of about 10 to 20 dB throughout the whole frequency range from 10 kHz to 20 MHz and falls below the detection floor above a few MHz. A good agreement is found with a model which uses the framework of rate equations coupled by cross--saturation. The remaining phase noise is attributed to thermal effects and additional technical noises and lies mainly within the bandwidth of a phase-locked-loop.
282 - Syamsundar De n 2015
The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency (RF) beatnote generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have a precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of our interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multi-mode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported, which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.
Optical frequency stabilization is a critical component for precision scientific systems including quantum sensing, precision metrology, and atomic timekeeping. Ultra-high quality factor photonic integrated optical resonators are a prime candidate for reducing their size, weight and cost as well as moving these systems on chip. However, integrated resonators suffer from temperature-dependent resonance drift due to the large thermal response as well as sensitivity to external environmental perturbations. Suppression of the cavity resonance drift can be achieved using precision interrogation of the cavity temperature through the dual-mode optical thermometry. This approach enables measurement of the cavity temperature change by detecting the resonance difference shift between two polarization or optical frequency modes. Yet this approach has to date only been demonstrated in bulk-optic whispering gallery mode and fiber resonators. In this paper, we implement dual-mode optical thermometry using dual polarization modes in a silicon nitride waveguide resonator for the first time, to the best of our knowledge. The temperature responsivity and sensitivity of the dual-mode TE/TM resonance difference is 180.7$pm$2.5 MHz/K and 82.56 $mu$K, respectively, in a silicon nitride resonator with a 179.9E6 intrinsic TM mode Q factor and a 26.6E6 intrinsic TE mode Q factor. Frequency stabilization is demonstrated by locking a laser to the TM mode cavity resonance and applying the dual-mode resonance difference to a feedforward laser frequency drift correction circuit with a drift rate improvement to 0.31 kHz/s over the uncompensated 10.03 kHz/s drift rate. Allan deviation measurements with dual-mode feedforward-correction engaged shows that a fractional frequency instability of 9.6E-11 over 77 s can be achieved.
An ultra-low intensity and beatnote phase noise dual-frequency vertical-external-cavity surface-emitting laser is built at telecom wavelength. The pump laser is realized by polarization combining two single-mode fibered laser diodes in a single-mode fiber, leading to a 100 % in-phase correlation of the pump noises for the two modes. The relative intensity noise is lower than -140 dB/Hz, and the beatnote phase noise is suppressed by 30 dB, getting close to the spontaneous emission limit. The role of the imperfect cancellation of the thermal effect resulting from unbalanced pumping of the two modes in the residual phase noise is evidenced.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا