Half-metallicity in quaternary Heusler alloys with 3$d$ and 4$d$ elements: observations and insights from DFT calculations


Abstract in English

In this work, we provide important insights into the evolution of half-metallicity in quaternary Heusler alloys. Employing {it ab initio} electronic structure methods we study 18 quaternary Heusler compounds having the chemical formula CoX$^prime$Y$^prime$Al, where Y$^prime$ = Mn, Fe; and X$^prime$ a 4$d$ element. Along with the search for new materials for spintronics applications, the trends in structural, electronic, magnetic properties and Curie temperature were investigated. We have made comparative studies with the compounds in the quaternary series CoX$^{prime}$Y$^{prime}$Si with X$^{prime}$ materials from 3$d$ and 4$d$ transition metal series in the periodic table. We observe that the half-metallic behaviour depends primarily on the crystal structure type based on atomic arrangements and the number of valence electrons. As long as these two are identical, the electronic structures and the magnetic exchange interactions bear close resemblances. Consequently, the materials exhibit identical electronic properties, by and large. We analysed the roles of different transition metal atoms in affecting hybridisations and correlated them with the above observations. This work, therefore, provides important perspectives regarding the underlying physics of half-metallic behaviour in quaternary Heusler compounds which goes beyond specifics of a given material. This, thus, paves way for smart prediction of new half-metals. This work also figures out an open problem of understanding how different ternary Heuslers with different electronic behaviour may lead to half-metallic behaviour in quaternary Heuslers with 4$d$ transition metal elements.

Download