Do you want to publish a course? Click here

Consequences of integrability breaking in quench dynamics of pairing Hamiltonians

134   0   0.0 ( 0 )
 Added by Emil Yuzbashyan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the collisionless dynamics of two classes of nonintegrable pairing models. One is a BCS model with separable energy-dependent interactions, the other - a 2D topological superconductor with spin-orbit coupling and a band-splitting external field. The long-time quantum quench dynamics at integrable points of these models are well understood. Namely, the squared magnitude of the time-dependent order parameter $Delta(t)$ can either vanish (Phase I), reach a nonzero constant (Phase II), or periodically oscillate as an elliptic function (Phase III). We demonstrate that nonintegrable models too exhibit some or all of these nonequilibrium phases. Remarkably, elliptic periodic oscillations persist, even though both their amplitude and functional form change drastically with integrability breaking. Striking new phenomena accompany loss of integrability. First, an extremely long time scale emerges in the relaxation to Phase III, such that short-time numerical simulations risk erroneously classifying the asymptotic state. This time scale diverges near integrable points. Second, an entirely new Phase IV of quasiperiodic oscillations of $|Delta|$ emerges in the quantum quench phase diagrams of nonintegrable pairing models. As integrability techniques do not apply for the models we study, we develop the concept of asymptotic self-consistency and a linear stability analysis of the asymptotic phases. With the help of these new tools, we determine the phase boundaries, characterize the asymptotic state, and clarify the physical meaning of the quantum quench phase diagrams of BCS superconductors. We also propose an explanation of these diagrams in terms of bifurcation theory.



rate research

Read More

We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously nonzero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.
166 - Haiping Hu , Chao Yang , 2019
Hopf insulators are exotic topological states of matter outside the standard ten-fold way classification based on discrete symmetries. Its topology is captured by an integer invariant that describes the linking structures of the Hamiltonian in the three-dimensional momentum space. In this paper, we investigate the quantum dynamics of Hopf insulators across a sudden quench and show that the quench dynamics is characterized by a $mathbb{Z}_2$ invariant $ u$ which reveals a rich interplay between quantum quench and static band topology. We construct the $mathbb{Z}_2$ topological invariant using the loop unitary operator, and prove that $ u$ relates the pre- and post-quench Hopf invariants through $ u=(mathcal{L}-mathcal{L}_0)bmod 2$. The $mathbb{Z}_2$ nature of the dynamical invariant is in sharp contrast to the $mathbb{Z}$ invariant for the quench dynamics of Chern insulators in two dimensions. The non-trivial dynamical topology is further attributed to the emergence of $pi$-defects in the phase band of the loop unitary. These $pi$-defects are generally closed curves in the momentum-time space, for example, as nodal rings carrying Hopf charge.
The spontaneous breaking of parity-time ($mathcal{PT}$) symmetry, which yields rich critical behavior in non-Hermitian systems, has stimulated much interest. Whereas most previous studies were performed within the single-particle or mean-field framework, exploring the interplay between $mathcal{PT}$ symmetry and quantum fluctuations in a many-body setting is a burgeoning frontier. Here, by studying the collective excitations of a Fermi superfluid under an imaginary spin-orbit coupling, we uncover an emergent $mathcal{PT}$-symmetry breaking in the Anderson-Bogoliubov (AB) modes, whose quasiparticle spectra undergo a transition from being completely real to completely imaginary, even though the superfluid ground state retains an unbroken $mathcal{PT}$ symmetry. The critical point of the transition is marked by a non-analytic kink in the speed of sound, as the latter completely vanishes at the critical point where the system is immune to low-frequency perturbations.These critical phenomena derive from the presence of a spectral point gap in the complex quasiparticle dispersion, and are therefore topological in origin.
We study the quench dynamics of non-Hermitian topological models with non-Hermitian skin effects. Adopting the non-Bloch band theory and projecting quench dynamics onto the generalized Brillouin zone, we find that emergent topological structures, in the form of dynamic skyrmions, exist in the generalized momentum-time domain, and are correlated with the non-Bloch topological invariants of the static Hamiltonians. The skyrmion structures anchor on the fixed points of dynamics whose existence are conditional on the coincidence of generalized Brillouin zones of the pre- and post-quench Hamiltonians. Global signatures of dynamic skyrmions, however, persist well beyond such a condition, thus offering a general dynamic detection scheme for non-Bloch topology in the presence of non-Hermitian skin effects. Applying our theory to an experimentally relevant, non-unitary quantum walk, we explicitly demonstrate how the non-Bloch topological invariants can be revealed through the non-Bloch quench dynamics.
Majorana fermions, quantum particles that are their own anti-particles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently Majorana fermions have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing between two Fermions with opposite momenta (textit{% i.e.}, zero total momentum). On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, were predicted 50 years ago and then widely studied in many branches of physics. However, whether FFLO superconductors can also support Majorana fermions has not been explored. Here we show that Majorana fermions can exist in certain types of gapped FFLO states, yielding a new topological quantum matter: topological FFLO superfluids/superconductors. We demonstrate the existence of such topological FFLO superfluids and the associated Majorana fermions using spin-orbit coupled degenerate Fermi gases and derive their physical parameter regions. The potential implementation of topological FFLO superconductors in semiconductor/superconductor heterostructures are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا