Do you want to publish a course? Click here

Layer-Parallel Training of Deep Residual Neural Networks

66   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Residual neural networks (ResNets) are a promising class of deep neural networks that have shown excellent performance for a number of learning tasks, e.g., image classification and recognition. Mathematically, ResNet architectures can be interpreted as forward Euler discretizations of a nonlinear initial value problem whose time-dependent control variables represent the weights of the neural network. Hence, training a ResNet can be cast as an optimal control problem of the associated dynamical system. For similar time-dependent optimal control problems arising in engineering applications, parallel-in-time methods have shown notable improvements in scalability. This paper demonstrates the use of those techniques for efficient and effective training of ResNets. The proposed algorithms replace the classical (sequential) forward and backward propagation through the network layers by a parallel nonlinear multigrid iteration applied to the layer domain. This adds a new dimension of parallelism across layers that is attractive when training very deep networks. From this basic idea, we derive multiple layer-parallel methods. The most efficient version employs a simultaneous optimization approach where updates to the network parameters are based on inexact gradient information in order to speed up the training process. Using numerical examples from supervised classification, we demonstrate that the new approach achieves similar training performance to traditional methods, but enables layer-parallelism and thus provides speedup over layer-serial methods through greater concurrency.

rate research

Read More

115 - Qi Sun , Hexin Dong , Zewei Chen 2020
Gradient-based algorithms for training ResNets typically require a forward pass of the input data, followed by back-propagating the objective gradient to update parameters, which are time-consuming for deep ResNets. To break the dependencies between modules in both the forward and backward modes, auxiliary-variable methods such as the penalty and augmented Lagrangian (AL) approaches have attracted much interest lately due to their ability to exploit layer-wise parallelism. However, we observe that large communication overhead and lacking data augmentation are two key challenges of these methods, which may lead to low speedup ratio and accuracy drop across multiple compute devices. Inspired by the optimal control formulation of ResNets, we propose a novel serial-parallel hybrid training strategy to enable the use of data augmentation, together with downsampling filters to reduce the communication cost. The proposed strategy first trains the network parameters by solving a succession of independent sub-problems in parallel and then corrects the network parameters through a full serial forward-backward propagation of data. Such a strategy can be applied to most of the existing layer-parallel training methods using auxiliary variables. As an example, we validate the proposed strategy using penalty and AL methods on ResNet and WideResNet across MNIST, CIFAR-10 and CIFAR-100 datasets, achieving significant speedup over the traditional layer-serial training methods while maintaining comparable accuracy.
The aim of this paper is to develop a general framework for training neural networks (NNs) in a distributed environment, where training data is partitioned over a set of agents that communicate with each other through a sparse, possibly time-varying, connectivity pattern. In such distributed scenario, the training problem can be formulated as the (regularized) optimization of a non-convex social cost function, given by the sum of local (non-convex) costs, where each agent contributes with a single error term defined with respect to its local dataset. To devise a flexible and efficient solution, we customize a recently proposed framework for non-convex optimization over networks, which hinges on a (primal) convexification-decomposition technique to handle non-convexity, and a dynamic consensus procedure to diffuse information among the agents. Several typical choices for the training criterion (e.g., squared loss, cross entropy, etc.) and regularization (e.g., $ell_2$ norm, sparsity inducing penalties, etc.) are included in the framework and explored along the paper. Convergence to a stationary solution of the social non-convex problem is guaranteed under mild assumptions. Additionally, we show a principled way allowing each agent to exploit a possible multi-core architecture (e.g., a local cloud) in order to parallelize its local optimization step, resulting in strategies that are both distributed (across the agents) and parallel (inside each agent) in nature. A comprehensive set of experimental results validate the proposed approach.
In order to deploy deep convolutional neural networks (CNNs) on resource-limited devices, many model pruning methods for filters and weights have been developed, while only a few to layer pruning. However, compared with filter pruning and weight pruning, the compact model obtained by layer pruning has less inference time and run-time memory usage when the same FLOPs and number of parameters are pruned because of less data moving in memory. In this paper, we propose a simple layer pruning method using fusible residual convolutional block (ResConv), which is implemented by inserting shortcut connection with a trainable information control parameter into a single convolutional layer. Using ResConv structures in training can improve network accuracy and train deep plain networks, and adds no additional computation during inference process because ResConv is fused to be an ordinary convolutional layer after training. For layer pruning, we convert convolutional layers of network into ResConv with a layer scaling factor. In the training process, the L1 regularization is adopted to make the scaling factors sparse, so that unimportant layers are automatically identified and then removed, resulting in a model of layer reduction. Our pruning method achieves excellent performance of compression and acceleration over the state-of-the-arts on different datasets, and needs no retraining in the case of low pruning rate. For example, with ResNet-110, we achieve a 65.5%-FLOPs reduction by removing 55.5% of the parameters, with only a small loss of 0.13% in top-1 accuracy on CIFAR-10.
We present a novel algorithmic approach and an error analysis leveraging Quasi-Monte Carlo points for training deep neural network (DNN) surrogates of Data-to-Observable (DtO) maps in engineering design. Our analysis reveals higher-order consistent, deterministic choices of training points in the input data space for deep and shallow Neural Networks with holomorphic activation functions such as tanh. These novel training points are proved to facilitate higher-order decay (in terms of the number of training samples) of the underlying generalization error, with consistency error bounds that are free from the curse of dimensionality in the input data space, provided that DNN weights in hidden layers satisfy certain summability conditions. We present numerical experiments for DtO maps from elliptic and parabolic PDEs with uncertain inputs that confirm the theoretical analysis.
Deep learning models trained on large data sets have been widely successful in both vision and language domains. As state-of-the-art deep learning architectures have continued to grow in parameter count so have the compute budgets and times required to train them, increasing the need for compute-efficient methods that parallelize training. Two common approaches to parallelize the training of deep networks have been data and model parallelism. While useful, data and model parallelism suffer from diminishing returns in terms of compute efficiency for large batch sizes. In this paper, we investigate how to continue scaling compute efficiently beyond the point of diminishing returns for large batches through local parallelism, a framework which parallelizes training of individual layers in deep networks by replacing global backpropagation with truncated layer-wise backpropagation. Local parallelism enables fully asynchronous layer-wise parallelism with a low memory footprint, and requires little communication overhead compared with model parallelism. We show results in both vision and language domains across a diverse set of architectures, and find that local parallelism is particularly effective in the high-compute regime.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا