Do you want to publish a course? Click here

A Balloon-Borne Very Long Baseline Interferometry Experiment in the Stratosphere: Systems Design and Developments

228   0   0.0 ( 0 )
 Added by Akihiro Doi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The balloon-borne very long baseline interferometry (VLBI) experiment is a technical feasibility study for performing radio interferometry in the stratosphere. The flight model has been developed. A balloon-borne VLBI station will be launched to establish interferometric fringes with ground-based VLBI stations distributed over the Japanese islands at an observing frequency of approximately 20 GHz as the first step. This paper describes the system design and development of a series of observing instruments and bus systems. In addition to the advantages of avoiding the atmospheric effects of absorption and fluctuation in high frequency radio observation, the mobility of a station can improve the sampling coverage (`uv-coverage) by increasing the number of baselines by the number of ground-based counterparts for each observation day. This benefit cannot be obtained with conventional arrays that solely comprise ground-based stations. The balloon-borne VLBI can contribute to a future progress of research fields such as black holes by direct imaging.

rate research

Read More

Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these extremely sensitive stations with other radio telescopes, and in SKA2 by realising a distributed configuration providing baselines up to thousands of km, merging it with existing VLBI networks. The motivation for and the possible realization of SKA-VLBI is described in this paper.
Some models of the expanding Universe predict that the astrometric proper motion of distant radio sources embedded in space-time are non-zero as the radial distance from observer to the source grows. Systematic proper motion effects would produce a predictable quadrupole pattern on the sky that could be detected using Very Long Baseline Interferometry (VLBI) technique. This quadrupole pattern can be interpreted either as an anisotropic Hubble expansion, or as a signature of the primordial gravitational waves in the early Universe. We present our analysis of a large set of geodetic VLBI data spanning 1979--2015 to estimate the dipole and quadrupole harmonics in the expansion of the vector field of the proper motions of quasars in the sky. The analysis is repeated for different redshift zones.
Space very long baseline interferometry (VLBI) has unique applications in high-resolution imaging of fine structure of astronomical objects and high-precision astrometry due to the key long space-Earth or space-space baselines beyond the Earths diameter. China has been actively involved in the development of space VLBI in recent years. This review briefly summarizes Chinas research progress in space VLBI and the future development plan.
126 - Sheperd Doeleman 2011
Extension of very long baseline interferometry (VLBI) to observing wavelengths shorter than 1.3mm provides exceptional angular resolution (~20 micro arcsec) and access to new spectral regimes for the study of astrophysical phenomena. To maintain phase coherence across a global VLBI array at these wavelengths requires that ultrastable frequency references be used for the heterodyne receivers at all participating telescopes. Hydrogen masers have traditionally been used as VLBI references, but atmospheric turbulence typically limits (sub) millimeter VLBI coherence times to ~1-30 s. Cryogenic Sapphire Oscillators (CSO) have better stability than Hydrogen masers on these time scale and are potential alternatives to masers as VLBI references. Here, We describe the design, implementation and tests of a system to produce a 10 MHz VLBI frequency standard from the microwave (11.2 GHz) output of a CSO. To improve long-term stability of the new reference, the CSO was locked to the timing signal from the Global Positioning System satellites and corrected for the oscillator aging. The long-term performance of the CSO was measured by comparison against a hydrogen maser in the same laboratory. The superb short-term performance, along with the improved long-term performance achieved by conditioning, makes the CSO a suitable reference for VLBI at wavelengths less than 1.3mm.
EBEX was a long-duration balloon-borne experiment to measure the polarization of the cosmic microwave background. The experiment had three frequency bands centered at 150, 250, and 410 GHz and was the first to use a kilo-pixel array of transition edge sensor (TES) bolometers aboard a balloon platform; shortly after reaching float we operated 504, 342, and 109 TESs at each of the bands, respectively. We describe the design and characterization of the array and the readout system. We give the distributions of measured thermal conductances, normal resistances, and transition temperatures. With the exception of the thermal conductance at 150 GHz. We measured median low-loop-gain time constants $tau_{0}=$ 88, 46, and 57 ms and compare them to predictions. Two measurements of bolometer absorption efficiency show high ($sim$0.9) efficiency at 150 GHz and medium ($sim$0.35, and $sim$0.25) at the two higher bands, respectively. We measure a median total optical load of 3.6, 5.3 and 5.0 pW absorbed at the three bands, respectively. EBEX pioneered the use of the digital version of the frequency domain multiplexing (FDM) system which multiplexed the bias and readout of 16 bolometers onto two wires. We present accounting of the measured noise equivalent power. The median per-detector noise equivalent temperatures referred to a black body with a temperature of 2.725 K are 400, 920, and 14500 $mu$K$sqrt{s}$ for the three bands, respectively. We compare these values to our pre-flight predictions and to a previous balloon payload, discuss the sources of excess noise, and the path for a future payload to make full use of the balloon environment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا