The physical processes related to the effect of bar in the quenching of star formation in the region between the nuclear/central sub-kpc region and the ends of the bar (bar-region) of spiral galaxies is not fully understood. It is hypothesized that the bar can either stabilize the gas against collapse, inhibiting star formation or efficiently consume all the available gas, with no fuel for further star formation. We present a multi-wavelength study using the archival data of an early-type barred spiral galaxy, Messier 95, which shows signatures of suppressed star formation in the bar-region. Using the optical, ultraviolet, infrared, CO and HI imaging data we study the pattern of star formation progression, stellar/gas distribution and try to provide insights on the process responsible for the observed pattern. The FUV$-$NUV pixel colour map reveals a cavity devoid of UV flux in the bar-region that interestingly matches with the length of the bar ($sim$ 4.2kpc). The central nuclear region of the galaxy is showing a blue color clump and along the major-axis of the stellar bar the colour progressively becomes redder. Based on a comparison to single stellar population models, we show that the region of galaxy along the major-axis of the bar (unlike the region outside the bar) is comprised of stellar populations with ages $geq$ 350 Myr, with a star-forming clump in the center of younger ages ($sim$ 150Myr). Interestingly the bar-region is also devoid of neutral and molecular hydrogen but with an abundant molecular hydrogen present at the nuclear region of the galaxy. Our results are consistent with a picture in which the stellar bar in Messier 95 is redistributing the gas by funneling gas inflows to nuclear region, thus making the bar-region devoid of fuel for star formation.