Generalized Hamming weights of projective Reed--Muller-type codes over graphs


Abstract in English

Let $G$ be a connected graph and let $mathbb{X}$ be the set of projective points defined by the column vectors of the incidence matrix of $G$ over a field $K$ of any characteristic. We determine the generalized Hamming weights of the Reed--Muller-type code over the set $mathbb{X}$ in terms of graph theoretic invariants. As an application to coding theory we show that if $G$ is non-bipartite and $K$ is a finite field of ${rm char}(K) eq 2$, then the $r$-th generalized Hamming weight of the linear code generated by the rows of the incidence matrix of $G$ is the $r$-th weak edge biparticity of $G$. If ${rm char}(K)=2$ or $G$ is bipartite, we prove that the $r$-th generalized Hamming weight of that code is the $r$-th edge connectivity of $G$.

Download