Do you want to publish a course? Click here

Superluminous Supernovae from the Dark Energy Survey

72   0   0.0 ( 0 )
 Added by Charlotte Angus
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a sample of 21 hydrogen-free superluminous supernovae (SLSNe-I), and one hydrogen-rich SLSN (SLSN-II) detected during the five-year Dark Energy Survey (DES). These SNe, located in the redshift range 0.220<z<1.998, represent the largest homogeneously-selected sample of SLSN events at high redshift. We present the observed g,r, i, z light curves for these SNe, which we interpolate using Gaussian Processes. The resulting light curves are analysed to determine the luminosity function of SLSN-I, and their evolutionary timescales. The DES SLSN-I sample significantly broadens the distribution of SLSN-I light curve properties when combined with existing samples from the literature. We fit a magnetar model to our SLSNe, and find that this model alone is unable to replicate the behaviour of many of the bolometric light curves. We search the DES SLSN-I light curves for the presence of initial peaks prior to the main light-curve peak. Using a shock breakout model, our Monte Carlo search finds that 3 of our 14 events with pre-max data display such initial peaks. However, 10 events show no evidence for such peaks, in some cases down to an absolute magnitude of <-16, suggesting that such features are not ubiquitous to all SLSN-I events. We also identify a red pre-peak feature within the light curve of one SLSN, which is comparable to that observed within SN2018bsz.

rate research

Read More

Superluminous supernovae (SLSNe) are luminous transients that can be detected to high redshifts with upcoming optical time-domain surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). An interesting open question is whether the properties of SLSNe evolve through cosmic time. To address this question, in this paper we model the multi-color light curves of all 21 Type I SLSNe from the Dark Energy Survey (DES) with a magnetar spin-down engine, implemented in the Modular Open Source Fitter for Transients (MOSFiT). With redshifts up to $zapprox 2$, this sample includes some of the highest-redshift SLSNe. We find that the DES SLSNe span a similar range of ejecta and magnetar engine parameters to previous samples of mostly lower-redshift SLSNe (spin period $Papprox 0.79-13.61$ ms, magnetic field $Bapprox (0.03-7.33)times10^{14}$ G, ejecta mass $M_{rm ej}approx 1.54-30.32$ M$_{odot}$, and ejecta velocity $v_{rm ej}approx (0.55-1.45)times 10^4$ km s$^{-1}$). The DES SLSN sample by itself exhibits the previously found negative correlation between $M_{rm ej}$ and $P$, with a pronounced absence of SLSNe with low ejecta mass and rapid spin. Combining our results for the DES SLSNe with 60 previous SLSNe modeled in the same way, we find no evidence for redshift evolution in any of the key physical parameters.
161 - A. Papadopoulos 2015
We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find M_U_peak = -21.05 +0.10 -0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low metallicity (sub-solar), low stellar-mass host galaxy (log(M/M_sun) = 9.3 +/- 0.3); consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2-0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for standardising such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I - the radioactive decay of 56Ni, and a magnetar - and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.
Supernovae (SNe) are the most brilliant optical stellar-class explosions. Over the past two decades, several optical transient survey projects discovered more than $sim 100$ so-called superluminous supernovae (SLSNe) whose peak luminosities and radiated energy are $gtrsim 7times 10^{43}$ erg s$^{-1}$ and $gtrsim 10^{51}$ erg, at least an order of magnitude larger than that of normal SNe. According to their optical spectra features, SLSNe have been split into two broad categories of type I that are hydrogen-deficient and type II that are hydrogen-rich. Investigating and determining the energy sources of SLSNe would be of outstanding importance for understanding the stellar evolution and explosion mechanisms. The energy sources of SLSNe can be determined by analyzing their light curves (LCs) and spectra. The most prevailing models accounting for the SLSN LCs are the $^{56}$Ni cascade decay model, the magnetar spin-down model, the ejecta-CSM interaction model, and the jet-ejecta interaction model. In this textit{review}, we present several energy-source models and their different combinations.
We present the results from a sensitive X-ray survey of 26 nearby hydrogen-poor superluminous supernovae (SLSNe-I) with Swift, Chandra and XMM. This dataset constrains the SLSN evolution from a few days until ~2000 days after explosion, reaching a luminosity L_x~10^40 erg/s and revealing the presence of significant X-ray emission at the location of PTF12dam. No SLSN-I is detected above L_x~10^41 erg/s, suggesting that the luminous X-ray emission L_x~10^45 erg/s associated with SCP60F6 is not common among SLSNe-I. We constrain the presence of off-axis GRB jets, ionization breakouts from magnetar central engines and the density in the sub-pc environments of SLSNe-I through Inverse Compton emission. The deepest limits rule out the weakest uncollimated GRB outflows, suggesting that IF the similarity of SLSNe-I with GRB/SNe extends to their fastest ejecta, then SLSNe-I are either powered by energetic jets pointed far away from our line of sight theta>30 deg, or harbor failed jets that do not successfully break through the stellar envelope. Furthermore, IF a magnetar central engine is responsible for the exceptional luminosity of SLSNe-I, our X-ray analysis favors large magnetic fields B>2x10^(14) G and ejecta masses M_ej>3 Msun in agreement with optical/UV studies. Finally, we constrain the pre-explosion mass-loss rate of stellar progenitors of SLSNe-I. For PTF12dam we infer Mdot<2x10^(-5) Msun/yr, suggesting that the SN shock interaction with the CSM is unlikely to supply the main source of energy powering the optical transient and that some SLSN-I progenitors end their life as compact stars surrounded by a low-density medium similar to long GRBs and Type Ib/c SNe.
In the last decade, astronomers have found a new type of supernova called `superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z~4 and therefore, offer the possibility of probing the distant Universe. We aim to investigate the possibility of detecting SLSNe-I using ESAs Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z ~ 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z>1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا