A crucial aspect of mass-mapping, via weak lensing, is quantification of the uncertainty introduced during the reconstruction process. Properly accounting for these errors has been largely ignored to date. We present a new method to reconstruct maximum a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem with Laplace-type l1-norm sparsity-promoting priors, which we solve via convex optimization. Approaching mass-mapping in this manner allows us to exploit recent developments in probability concentration theory to infer theoretically conservative uncertainties for our MAP reconstructions, without relying on assumptions of Gaussianity. For the first time these methods allow us to perform hypothesis testing of structure, from which it is possible to distinguish between physical objects and artifacts of the reconstruction. Here we present this new formalism, demonstrate the method on simulations, before applying the developed formalism to two observational datasets of the Abel-520 cluster. Initial reconstructions of the Abel-520 catalogs reported the detection of an anomalous dark core -- an over dense region with no optical counterpart -- which was taken to be evidence for self-interacting dark-matter. In our Bayesian framework it is found that neither Abel-520 dataset can conclusively determine the physicality of such dark cores at 99% confidence. However, in both cases the recovered MAP estimators are consistent with both sets of data.