Interactions between non-resonant rf fields and atoms with strong spin-exchange collisions


Abstract in English

We study the interactions between oscillating non-resonant rf fields and atoms with strong spin-exchange collisions in the presence of a weak dc magnetic field. We find that the atomic Larmor precession frequency shows a new functional form to the rf field parameters when the spin-exchange collision rate is tuned. In the weak rf field amplitude regime, a strong modification of atomic Larmor frequency appears when the spin-exchange rate is comparable to the rf field frequency. This new effect has been neglected before due to its narrow observation window. We compare the experimental results with density matrix calculations, and explain the data by an underdamped oscillator model. When the rf field amplitude is large, there is a minimum atomic gyromagnetic ratio point due to the rf photon dressing, and we find that strong spin-exchange interactions modify the position of such a point.

Download