Do you want to publish a course? Click here

The Gaia-LSST Synergy: resolved stellar populations in selected Local Group stellar systems

80   0   0.0 ( 0 )
 Added by Gisella Clementini
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This project aims at exploiting the wide-field and limiting-magnitude capabilities of the LSST to fully characterise the resolved stellar populations in/around six Local Group stellar systems of different morphological type at ~30 to ~400 kpc distance from us. We selected targets that host red giant branch (RGB) stars which are within the reach of Gaia and not yet (all) saturated with the LSST. We will use RR Lyrae stars, Cepheids, SX Phoenicis, delta Scuti stars and Long Period Variables, along with the Color Magnitude Diagram of the resolved stellar populations in these 6 systems to: i) trace their different stellar generations over a spatial extension and with a depth that only the LSST can achieve; ii) measure their distances using variable stars of different type/parent stellar population and the Tip of the RGB; iii) map their 3D structures up to the periphery of their halos; iv) search for tidal streams; and v) study their Star Formation Histories over unprecedented large fractions of their bodies. Our ultimate goals are to provide a complete picture of these nearby stellar systems all the way through to their periphery, and to directly link and cross-calibrate the Gaia and LSST projects.



rate research

Read More

We discuss the synergy of Gaia and the Large Synoptic Survey Telescope (LSST) in the context of Milky Way studies. LSST can be thought of as Gaias deep complement because the two surveys will deliver trigonometric parallax, proper-motion, and photometric measurements with similar uncertainties at Gaias faint end at $r=20$, and LSST will extend these measurements to a limit about five magnitudes fainter. We also point out that users of Gaia data will have developed data analysis skills required to benefit from LSST data, and provide detailed information about how international participants can join LSST.
The orbits of binary stars and planets, particularly eccentricities and inclinations, encode the angular momentum within these systems. Within stellar multiple systems, the magnitude and (mis)alignment of angular momentum vectors among stars, disks, and planets probes the complex dynamical processes guiding their formation and evolution. The accuracy of the textit{Gaia} catalog can be exploited to enable comparison of binary orbits with known planet or disk inclinations without costly long-term astrometric campaigns. We show that textit{Gaia} astrometry can place meaningful limits on orbital elements in cases with reliable astrometry, and discuss metrics for assessing the reliability of textit{Gaia} DR2 solutions for orbit fitting. We demonstrate our method by determining orbital elements for three systems (DS Tuc AB, GK/GI Tau, and Kepler-25/KOI-1803) using textit{Gaia} astrometry alone. We show that DS Tuc ABs orbit is nearly aligned with the orbit of DS Tuc Ab, GK/GI Taus orbit might be misaligned with their respective protoplanetary disks, and the Kepler-25/KOI-1803 orbit is not aligned with either components transiting planetary system. We also demonstrate cases where textit{Gaia} astrometry alone fails to provide useful constraints on orbital elements. To enable broader application of this technique, we introduce the python tool texttt{lofti_gaiaDR2} to allow users to easily determine orbital element posteriors.
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and velocity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC0104 (47Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC0288, NGC5904 (M5), NGC6121 (M4), NGC6752, NGC6838 (M71) and further explore NGC0104. Among the analyzed clusters only NGC0104 and NGC5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC5904 exhibit different rotation curves.
192 - Justyn R. Maund 2017
The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H-deficient SNe. The final fate of more massive stars, capable of undergoing a Wolf-Rayet phase, and the origins of Type Ibc SNe remains debated, including the relative importance of single massive star progenitors or lower mass stars stripped in binaries. We present an analysis of the ages and spatial distributions of massive stars around the sites of 23 stripped-envelope SNe, as observed with the Hubble Space Telescope, to probe the possible origins of the progenitors of these events. Using a Bayesian stellar populations analysis scheme, we find characteristic ages for the populations observed within $150,mathrm{pc}$ of the target Type IIb, Ib and Ic SNe to be $log (t) = 7.20$, $7.05$ and $6.57$, respectively. The Type Ic SNe in the sample are nearly all observed within $100,mathrm{pc}$ of young, dense stellar populations. The environment around SN 2002ap is an important exception both in terms of age and spatial properties. These findings may support the hypothesis that stars with $M_{init} > 30M_{odot}$ produce a relatively large proportion of Type Ibc SNe, and that these SN subtypes arise from progressively more massive progenitors. Significantly higher extinctions are derived towards the populations hosting these SNe than previously used in analysis of constraints from pre-explosion observations. The large initial masses inferred for the progenitors are in stark contrast with the low ejecta masses estimated from SN light curves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا