Do you want to publish a course? Click here

Dynamic interfacial polaron enhanced superconductivity of FeSe/SrTiO3

92   0   0.0 ( 0 )
 Added by Jiandong Guo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observation of substantially enhanced superconductivity of single-layer FeSe films on SrTiO3 has stimulated intensive research interest. At present, conclusive experimental data on the corresponding electron-boson interaction is still missing. Here we use inelastic electron scattering spectroscopy and angle resolved photoemission spectroscopy to show that the electrons in these systems are dressed by the strongly polarized lattice distortions of the SrTiO3, and the indispensable non-adiabatic nature of such a coupling leads to the formation of dynamic interfacial polarons. Furthermore, the collective motion of the polarons results in a polaronic plasmon mode, which is unambiguously correlated with the surface phonons of SrTiO3 in the presence of the FeSe films. A microscopic model is developed showing that the interfacial polaron-polaron interaction leads to the superconductivity enhancement.



rate research

Read More

258 - R. Peng , X. P. Shen , X. Xie 2013
Single-layer FeSe films with extremely expanded in-plane lattice constant of 3.99A are fabricated by epitaxially growing FeSe/Nb:SrTiO3/KTaO3 heterostructures, and studied by in situ angle-resolved photoemission spectroscopy. Two elliptical electron pockets at the Brillion zone corner are resolved with negligible hybridization between them, indicating the symmetry of the low energy electronic structure remains intact as a free-standing single-layer FeSe, although it is on a substrate. The superconducting gap closes at a record high temperature of 70K for the iron based superconductors. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results put strong constraints on the current theories, and support the coexistence of both even and odd parity spin-singlet pairing channels as classified by the lattice symmetry.
In paired Fermi systems, strong many-body effects exhibit in the crossover regime between the Bardeen-Cooper-Schrieffer (BCS) and the Bose-Einstein condensation (BEC) limits. The concept of the BCS-BEC crossover, which is studied intensively in the research field of cold atoms, has been extended to condensed matters. Here, by analyzing the typical superconductors within the BCS-BEC phase diagram, we find that FeSe-based superconductors are prone to shift their positions in the BCS-BEC crossover regime by charge doping or substrate substitution, since their Fermi energies and the superconducting gap sizes are comparable. Especially at the interface of a single-layer FeSe on SrTiO3 substrate, the superconductivity is relocated closer to the crossover unitary than other doped FeSe-based materials, indicating that the pairing interaction is effectively modulated. We further show that hole-doping can drive the interfacial system into the phase with possible pre-paired electrons, demonstrating its flexible tunability within the BCS-BEC crossover regime.
Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature Tc and distinct electronic structures in iron-based superconductors. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results obtained from the transport, magnetic and spectroscopic measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe for the first time strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~100 meV by high-resolution angle-resolved photoemission measurements. The Bogoliubov back-bending band provides a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K in the single-layer FeSe/STO films. Moreover, we find that the superconductivity pairing state can be further divided into two temperature regions of 64-83 K and below 64 K. We propose the 64-83 K region may be attributed to superconductivity fluctuation while the region below 64 K corresponds to the realization of long-range superconducting phase coherence. These results indicate that either Tc as high as 83 K is achievable in iron-based superconductors, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.
229 - Xu Liu , Defa Liu , Wenhao Zhang 2014
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much attention. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.
FeSe is a unique superconductor that can be manipulated to enhance its superconductivity using different routes while its monolayer form grown on different substrates reaches a record high temperature for a two-dimensional system. In order to understand the role played by the substrate and the reduced dimensionality on superconductivity, we examine the superconducting properties of exfoliated FeSe thin flakes by reducing the thickness from bulk down towards 9 nm. Magnetotransport measurements performed in magnetic fields up to 16T and temperatures down to 2K help to build up complete superconducting phase diagrams of different thickness flakes. While the thick flakes resemble the bulk behaviour, by reducing the thickness the superconductivity of FeSe flakes is suppressed. In the thin limit we detect signatures of a crossover towards two-dimensional behaviour from the observation of the vortex-antivortex unbinding transition and strongly enhanced anisotropy. Our study provides detailed insights into the evolution of the superconducting properties from three-dimensional bulk behaviour towards the two-dimensional limit of FeSe in the absence of a dopant substrate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا