Do you want to publish a course? Click here

The Soft-Excess in Mrk 509: Warm Corona or Relativistic Reflection?

69   0   0.0 ( 0 )
 Added by Javier Garcia
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of the first NuSTAR observations ($sim 220$ ks), simultaneous with the last SUZAKU observations ($sim 50$ ks), of the active galactic nucleus of the bright Seyfert 1 galaxy Mrk 509. The time-averaged spectrum in the $1-79$ keV X-ray band is dominated by a power-law continuum ($Gammasim 1.8-1.9$), a strong soft excess around 1 keV, and signatures of X-ray reflection in the form of Fe K emission ($sim 6.4$ keV), an Fe K absorption edge ($sim 7.1$ keV), and a Compton hump due to electron scattering ($sim 20-30$ keV). We show that these data can be described by two very different prescriptions for the soft excess: a warm ($kTsim 0.5-1$ keV) and optically thick ($tausim10-20$) Comptonizing corona, or a relativistically blurred ionized reflection spectrum from the inner regions of the accretion disk. While these two scenarios cannot be distinguished based on their fit statistics, we argue that the parameters required by the warm corona model are physically incompatible with the conditions of standard coronae. Detailed photoionization calculations show that even in the most favorable conditions, the warm corona should produce strong absorption in the observed spectrum. On the other hand, while the relativistic reflection model provides a satisfactory description of the data, it also requires extreme parameters, such as maximum black hole spin, a very low and compact hot corona, and a very high density for the inner accretion disk. Deeper observations of this source are thus necessary to confirm the presence of relativistic reflection, and to further understand the nature of its soft excess.



rate research

Read More

We present the first results from a detailed spectral-timing analysis of a long ($sim$130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3$-$50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below $sim$1.5 keV, iron K$_{alpha}$ emission complex at $sim$6$-$7 keV and a `Compton hump at $sim$15$-$30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ($[2-6]times10^{-5}$ Hz), the power-law continuum dominated 1.5$-$5 keV band lags behind the reflection dominated 0.3$-$1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ($[1-2]times10^{-4}$ Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk~1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.
Context. The study of abundances in the nucleus of active galaxies allows us to investigate the evolution of abundance by comparing local and higher redshift galaxies. However, the methods used so far have substantial drawbacks or rather large uncertainties. Some of the measurements are at odds with the initial mass function derived from the older stellar population of local elliptical galaxies. Aims. We determine accurate and reliable abundances of C, N, Ne, and Fe relative to O from the narrow absorption lines observed in the X-ray spectra of Mrk 509. Methods. We use the stacked 600 ks XMM-Newton RGS and 180 ks Chandra LETGS spectra. Thanks to simultaneous observations with INTEGRAL and the optical monitor on-board XMM-Newton for the RGS observations and HST-COS and Swift for the LETGS observations, we have an individual spectral energy distribution for each dataset. Owing to the excellent quality of the RGS spectrum, the ionisation structure of the absorbing gas is well constrained, allowing for a reliable abundance determination using ions over the whole observed range of ionisation parameters. Results. We find that the relative abundances are consistent with the proto-solar abundance ratios: C/O = 1.19$pm$0.08, N/O = 0.98$pm$0.08, Ne/O = 1.11$pm$0.10, Mg/O = 0.68$pm$0.16, Si/O = 1.3$pm$0.6, Ca/O = 0.89$pm$0.25, and Fe/O = 0.85$pm$0.06, with the exception of S, which is slightly under-abundant, S/O = 0.57$pm$0.14. Our results, and their implications, are discussed and compared to the results obtained using other techniques to derive abundances in galaxies.
236 - P. Chainakun , A. J. Young 2015
We present an X-ray spectral and timing model to investigate the broad and variable iron line seen in the high flux state of Mrk 335. The model consists of a variable X-ray source positioned along the rotation axis of the black hole that illuminates the accretion disc producing a back-scattered, ionized reflection spectrum. We compute time lags including full dilution effects and perform simultaneous fitting of the 2-10 keV spectrum and the frequency-dependent time lags of 2.5-4 vs. 4-6.5 keV bands. The best-fitting parameters are consistent with a black hole mass of approximately 1.3 x 10^7 M_sun, disc inclination of 45 degrees and the photon index of the direct continuum of 2.4. The iron abundance is 0.5 and the ionization parameter is 10^3 erg cm / s at the innermost part of the disc and decreases further out. The X-ray source height is very small, approximately 2 r_g. Furthermore, we fit the Fe L lags simultaneously with the 0.3-10 keV spectrum. The key parameters are comparable to those previously obtained. We also report the differences below 2 keV using the xillver and reflionx models which could affect the interpretation of the soft excess. While simultaneously fitting spectroscopic and timing data can break the degeneracy between the source height and the black hole mass, we find that the measurements of the source height and the central mass significantly depend on the ionization state of the disc and are possibly model-dependent.
We present the analysis of XMM-Newton and Swift optical-UV and X-ray observations of the Seyfert-1/QSO Mrk 509, part of an unprecedented multi-wavelength campaign, investigating the nuclear environment of this AGN. The XMM-Newton data are from a series of 10 observations of about 60 ks each, spaced from each other by about 4 days, taken in Oct-Nov 2009. During our campaign, Mrk 509 was also observed with Swift for a period of about 100 days, monitoring the behaviour of the source before and after the XMM-Newton observations. With these data we have established the continuum spectrum in the optical-UV and X-ray bands and investigated its variability on the timescale of our campaign with a resolution time of a few days. In order to measure and model the continuum as far as possible into the UV, we also made use of HST/COS observations of Mrk 509 (part of our coordinated campaign) and of an archival FUSE observation. We have found that in addition to an X-ray power-law, the spectrum displays soft X-ray excess emission below 2 keV, which interestingly varies in association with the thermal optical-UV emission from the accretion disc. The change in the X-ray power-law component flux (albeit smaller than that of the soft excess), on the other hand, is uncorrelated to the flux variability of the soft X-ray excess and the disc component on the probed timescale. The results of our simultaneous broad-band spectral and timing analysis suggest that, on a resolution time of a few days, the soft X-ray excess of Mrk 509 is produced by the Comptonisation of the thermal optical-UV photons from the accretion disc by a warm (0.2 keV) optically thick (tau ~ 17) corona surrounding the inner regions of the disc. This makes Mrk 509, with a black hole mass of about 1-3 x 10^8 solar masses, the highest mass known system to display such behaviour and origin for the soft X-ray excess.
We report on the deepest X-ray observation of the narrow-line Seyfert 1 galaxy Mrk 335 in the low-flux state obtained with Suzaku. The data are compared to a 2006 high-flux Suzaku observation when the source was ~10-times brighter. Describing the two flux levels self-consistently with partial covering models would require extreme circumstances, as the source would be subject to negligible absorption during the bright state and ninety-five per cent covering with near Compton-thick material when dim. Blurred reflection from an accretion disc around a nearly maximum spinning black hole (a>0.91, with preference for a spin parameter as high as ~ 0.995) appears more likely and is consistent with the long-term and rapid variability. Measurements of the emissivity profile and spectral modelling indicate the high-flux Suzaku observation of Mrk 335 is consistent with continuum-dominated, jet-like emission (i.e. beamed away from the disc). It can be argued that the ejecta must be confined to within ~25 rg if it does not escape the system. During the low-flux state the corona becomes compact and only extends to about 5 rg from the black hole, and the spectrum becomes reflection-dominated. The low-frequency lags measured at both epochs are comparable indicating that the accretion mechanism is not changing between the two flux levels. Various techniques to study the spectral variability (e.g. principal component analysis, fractional variability, difference spectra, and hardness ratio analysis) indicate that the low-state variability is dominated by changes in the power law flux and photon index, but that changes in the ionisation state of the reflector are also required. Most notably, the ionisation parameter becomes inversely correlated with the reflected flux after a long-duration flare-like event during the observation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا