We present a minimal model for the quantum evolution of matter under the influence of classical gravity in the Newtonian limit. Based on a continuous measurement-feedback channel that acts simultaneously on all constituent masses of a given quantum system, the model scales and applies consistently to arbitrary mass densities, and it recovers the classical Newton force between macroscopic masses. The concomitant loss of coherence is set by a model parameter, does not depend on mass, and can thus be confined to unobservable time scales for micro- and macroscopic systems alike. The model can be probed in high-precision matter-wave interferometry, and ultimately tested in recently proposed optomechanical quantum gravity experiments.