The impact of spin induced deformation and shape phase transitions on nuclear level density and consequently on neutron emission spectra of the decay of compound nuclear systems 112^Ru to 123^Cs (N = 68 isotones) is investigated in a microscopic framework of Statistical theory of superfluid nuclei. Our calculations are in good accord with experimental data for evaporation residue of 119^Sb^* and 185^Re^* and show a strong correlation between spin induced structural transitions and NLD. We find that the inverse level density parameter K increases with increasing spin for all the systems, but it decreases with a deformation or a shape change that results in the enhancement of level density and emission probability. A sharp shape phase transition from oblate to uncommon prolate non-collective in well deformed nuclei leads to band crossing and enhancement of level density which fades away while approaching sphericity at or near shell closure manifesting shell effects.