Do you want to publish a course? Click here

The MORA project

75   0   0.0 ( 0 )
 Added by Pierre Delahaye
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MORA (Matters Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.



rate research

Read More

168 - M. Benali 2020
In the frame of the project MORA (Matters Origin from the Radio Activity of trapped and oriented ions), a transparent axially symmetric radio-frequency ion trap (MORATrap) was designed in order to measure the triple correlation parameter $D$ in nuclear $beta-$decay of laser-polarised ions. The trap design was inspired from the LPCTrap geometry, operated at GANIL from 2005 to 2013. In a real (non-ideal) Paul trap, the quadrupole electric potential is not perfect leading to instabilities in ion motion and therefore affecting the overall trapping efficiency. This paper presents a numerical method aiming to optimise the geometry of a trap. It is applied to MORATrap in order to improve the trapping efficiency and to enlarge the axial transparent solid angle compared to LPCTrap. In the whole optimisation process, numerical computation of electric potential and field was carried out using an electrostatic solver based on boundary element method (BEM). The optimisation consisted in minimising an objective function (fitness function) depending on higher order multipoles of the potential. Finally, systematic changes of trap dimensions and electrode displacements were applied to investigate geometrical effects on the potential quality.
147 - M.-F. Rivet 2012
FAZIA is designed for detailed studies of the isospin degree of freedom, extending to the limits the isotopic identification of charged products from nuclear collisions when using silicon detectors and CsI(Tl) scintillators. We show that the FAZIA telescopes give isotopic identification up to Z$sim$25 with a $Delta$E-E technique. Digital Pulse Shape Analysis makes possible elemental identification up to Z=55 and isotopic identification for Z=1-10 when using the response of a single silicon detector. The project is now in the phase of building a demonstrator comprising about 200 telescopes.
The Neutron Activation Analysis (NAA) plays an exceptional role in the modern nuclear engineering, especially in detection of hazardous substances. However, in the aquatic environment, there are still many problems to be solved for effective usage of this technique. We present status of SABAT (Stoichiometry Analysis By Activation Techniques), one of the projects aiming at construction of an underwater device for non-invasive threat detection based on the NAA.
A growing community of scientists has been using neutrons in the most diverse areas of science. In order to meet the researchers demand in the areas of physics, chemistry, materials sciences, engineering, cultural heritage, biology and earth sciences, the Brazilian Multipurpose Reactor (RMB) will provide 3 thermal guides and 3 cold guides, with the installation of several instruments for materials characterization. In this study, we present a standard design requirement of two primordial instruments, namely Sabia and Araponga. They are, respectively, cold and thermal neutron instruments and correspond to a Small-Angle Neutron Scattering (SANS) and High-Resolution Powder Neutron Diffractometer (HRPND) to be installed in the Neutron Guide Building (N02) of RMB. To provide adequate flux for both instruments, we propose here an initial investigation of the use of simple and split guides to transport neutron beams to two different instruments on the same guide. For this purpose, we use Monte Carlo simulations utilizing McStas software to check the efficiency of thermal neutron transport for different basic configuration and sources. By considering these results, it is possible to conclude that the split guide configuration is, in most cases, more efficient than cases that use transmitted neutron beams independently of source. We also verify that the employment of different coating indexes for concave and convex surfaces on curved guides is crucial, at least on simulated cases, to optimise neutron flux (intensity and divergence) and diminish facility installation cost.
348 - N. Marie 2013
Accelerator-Driven Systems (ADS) could be employed to incinerate minor actinides and so partly contribute to answer the problem of nuclear waste management. An ADS consists of the coupling of a subcritical fast reactor to a particle accelerator via a heavy material spallation target. The on-line reactivity monitoring of such an ADS is a serious issue regarding its safety. In order to study the methodology of this monitoring, zero-power experimentswere undertaken at the GUINEVERE facility within the framework of the FP6-IP-EUROTRANS programme. Such experiments have been under completion within the FREYA FP7 project. The GUINEVERE facility is hosted at the SCK-CEN site in Mol (Belgium). It couples the VENUS-F subcritical fast core with the GENEPI-3C accelerator. The latter delivers a beam of deuterons, which are converted into 14-MeV neutrons via fusion reactions on a tritiated target. This paper presents one of the investigated methods for ADS on-line reactivity monitoring which has to be validated in the program of the FREYA project. It describes the results obtained when Pulsed Neutron Source experiments are analysed using the so called Area Method, in order to estimate the reactivity of a few sub-critical configurations of the VENUS-F reactor, around keff= 0.96. First the GUINEVERE facility is described. Then, following general considerations on the Area method, the results of its application to the neutron population time decrease spectra measured after a pulse by several fission chambers spread out over the whole reactor are discussed. Finally the reactivity values extracted are compared to the static reactivity values obtained using the Modified Source Multiplication (MSM) method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا