Do you want to publish a course? Click here

Anti-Chaos Control via Nonlinear Schrodinger Equations for the secured optical communication

60   0   0.0 ( 0 )
 Added by Zhenyu Tang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coupled nonlinear Schrodinger equations, governing the propagation of envelopes of electromagnetic waves in birefringent optical fibers, are studied in this paper for their potential applications in the secured optical communication. Periodicity and integrability of the CNLS equations are obtained via the phase-plane analysis. With the time-delay and perturbations introduced, CNLS equations are chaotified and a chaotic system is proposed. Numerical and analytical methods are conducted on such system: (I) Phase projections are given and the final chaotic states can be observed. (II) Power spectra and the largest Lyapunov exponents are calculated to corroborate that those motions are indeed chaotic.



rate research

Read More

Higher-order nonlinear Schrodinger(HNLS) equation which can be used to describe the propagation of short light pulses in the optical fibers, is studied in this paper. Using the phase plane analysis, HNLS equation is reduced into the equivalent dynamical system, the periodicity of such system is obtained with the phase projections and power spectra given. By means of the time-delay feedback method, with the original dynamical system rewritten, we construct a single-input single-output system, and propose a chaotic system based on the chaotification of HNLS. Numerical studies have been conducted on such system. Chaotic motions with different time delays are displayed. Power spectra of such chaotic motions are calculated. Lyapunov exponents are given to corroborate that those motions are indeed chaotic.
76 - T. Congy , G.A. El , M.A. Hoefer 2018
The nonlinear Schrodinger (NLS) equation and the Whitham modulation equations both describe slowly varying, locally periodic nonlinear wavetrains, albeit in differing amplitude-frequency domains. In this paper, we take advantage of the overlapping asymptotic regime that applies to both the NLS and Whitham modulation descriptions in order to develop a universal analytical description of dispersive shock waves (DSWs) generated in Riemann problems for a broad class of integrable and non-integrable nonlinear dispersive equations. The proposed method extends DSW fitting theory that prescribes the motion of a DSWs edges into the DSWs interior, i.e., this work reveals the DSW structure. Our approach also provides a natural framework in which to analyze DSW stability. We consider several representative, physically relevant examples that illustrate the efficacy of the developed general theory. Comparisons with direct numerical simulations show that inclusion of higher order terms in the NLS equation enables a remarkably accurate description of the DSW structure in a broad region that extends from the harmonic, small amplitude edge.
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary dimension collapse does not occur. Then we study in detail the effect of singular nonlocal kernels in arbitrary dimension using both, Lyapunoffs method and virial identities. We find that for for a one-dimensional case, i.e. for $n=1$, collapse cannot happen for nonlocal nonlinearity. On the other hand, for spatial dimension $ngeq2$ and singular kernel $sim 1/r^alpha$, no collapse takes place if $alpha<2$, whereas collapse is possible if $alphage2$. Self-similar solutions allow us to find an expression for the critical distance (or time) at which collapse should occur in the particular case of $sim 1/r^2$ kernels. Moreover, different evolution scenarios for the three dimensional physically relevant case of Bose Einstein condensate are studied numerically for both, the ground state and a higher order toroidal state with and without an additional local repulsive nonlinear interaction. In particular, we show that presence of an additional local repulsive term can prevent collapse in those cases.
We obtain novel nonlinear Schr{o}dinger-Pauli equations through a formal non-relativistic limit of appropriately constructed nonlinear Dirac equations. This procedure automatically provides a physical regularisation of potential singularities brought forward by the nonlinear terms and suggests how to regularise previous equations studied in the literature. The enhancement of contributions coming from the regularised singularities suggests that the obtained equations might be useful for future precision tests of quantum nonlinearity.
Recently, an integrable system of coupled (2+1)-dimensional nonlinear Schrodinger (NLS) equations was introduced by Fokas (eq. (18) in Nonlinearity 29}, 319324 (2016)). Following this pattern, two integrable equations [eqs.2 and 3] with specific parity-time symmetry are introduced here, under different reduction conditions. For eq. 2, two kinds of periodic solutions are obtained analytically by means of the Hirotas bilinear method. In the long-wave limit, the two periodic solutions go over into rogue waves (RWs) and semi-rational solutions, respectively. The RWs have a line shape, while the semi-rational states represent RWs built on top of the background of periodic line waves. Similarly, semi-rational solutions consisting of a line RW and line breather are derived. For eq. 3, three kinds of analytical solutions,textit{viz}., breathers, lumps and semi-rational solutions, representing lumps, periodic line waves and breathers are obtained, using the Hirota method. Their dynamics are analyzed and demonstrated by means of three-dimensional plots. It is also worthy to note that eq. 2 can reduce to a (1+1)-dimensional textquotedblleft reverse-space nonlocal NLS equation by means of a certain transformation, Lastly, main differences between solutions of eqs.2 and 3 are summarized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا