Do you want to publish a course? Click here

First Measurements of the Double-Polarization Observables $F$, $P$, and $H$ in $omega$ Photoproduction off Transversely Polarized Protons in the $N^ast$ Resonance Region

91   0   0.0 ( 0 )
 Added by Volker Crede
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

First measurements of double-polarization observables in $omega$ photoproduction off the proton are presented using transverse target polarization and data from the CEBAF Large Acceptance Spectrometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry $F$ has been measured using circularly polarized, tagged photons in the energy range 1200 - 2700 MeV, and the beam-target asymmetries $H$ and $P$ have been measured using linearly polarized tagged photons in the energy range 1200 - 2000 MeV. These measurements significantly increase the database on polarization observables. The results are included in two partial-wave analyses and reveal significant contributions from several nucleon ($N^ast$) resonances. In particular, contributions from new $N^ast$ resonances listed in the Review of Particle Properties are observed, which aid in reaching the goal of mapping out the nucleon resonance spectrum.



rate research

Read More

The differential cross sections and unpolarized spin-density matrix elements for the reaction $gamma pto pomega$ were measured using the CBELSA/TAPS experiment for initial photon energies ranging from the reaction threshold to 2.5 GeV. These observables were measured from the radiative decay of the $omega$ meson, $omegatopi^0gamma$. The cross sections cover the full angular range and show the full extent of the $t$-channel forward rise. The overall shape of the angular distributions in the differential cross sections and unpolarized spin-density matrix elements are in fair agreement with previous data. In addition, for the first time, a beam of linearly-polarized tagged photons in the energy range from 1150 MeV to 1650 MeV was used to extract polarized spin-density matrix elements. These data were included in the Bonn-Gatchina partial wave analysis (PWA). The dominant contribution to $omega$ photoproduction near threshold was found to be the $3/2^+$ partial wave, which is primarily due to the sub-threshold $N(1720),3/2^+$ resonance. At higher energies, pomeron-exchange was found to dominate whereas $pi$-exchange remained small. These $t$-channel contributions as well as further contributions from nucleon resonances were necessary to describe the entire dataset: the $1/2^-$, $3/2^-$, and $5/2^+$ partial waves were also found to contribute significantly.
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector in the reaction $gamma pto ppi^0$ for photon energies between 0.85 and 2.50 GeV. The $pi^0$ mesons are observed in their dominant neutral decay mode: $pi^0togammagamma$. For the first time, the differential cross sections cover the very forward region, $theta_{rm c.m.}<60^circ$. A partial-wave analysis of these data within the Bonn-Gatchina framework observes the high-mass resonances $G_{17}$(2190), $D_{13}$(2080), and $D_{15}$(2070).
Cross-sections and recoil polarizations for the reactions gamma + p --> K^+ + Lambda and gamma + p --> K^+ + Sigma^0 have been measured with high statistics and with good angular coverage for center-of-mass energies between 1.6 and 2.3 GeV. In the K^+Lambda channel we confirm a structure near W=1.9 GeV at backward kaon angles, but our data shows a more complex s- and u- channel resonance structure than previously seen. This structure is present at forward and backward angles but not central angles, and its position and width change with angle, indicating that more than one resonance is playing a role. Rising back-angle cross sections at higher energies and large positive polarization at backward angles are consistent with sizable s- or u-channel contributions. None of the model calculations we present can consistently explain these aspects of the data.
158 - Jan Hartmann 2014
One of the remaining problems within the standard model is to gain a good understanding of the low energy regime of QCD, where perturbative methods fail. One key towards a better understanding is baryon spectroscopy. Unfortunately, in the past most baryon spectroscopy data have been obtained only using $pi$ N scattering. To gain access to resonances with small $pi$ N partial width, photoproduction experiments, investigating various final states, provide essential information. In order to extract the contributing resonances, partial wave analyses need to be performed. Here, the complete experiment is required to unambiguously determine the contributing amplitudes. This involves the measurement of carefully chosen single and double polarization observables. The Crystal Barrel/TAPS experiment with a longitudinally or transversely polarized target and an energy tagged, linearly or circularly polarized photon beam allows the measurement of a large set of polarization observables. Due to its good energy resolution, high detection efficiency for photons, and the nearly complete solid angle coverage, it is ideally suited for the measurement of the photoproduction of neutral mesons decaying into photons. Preliminary results for the target asymmetry T, recoil polarization P and the double polarization observable H are discussed for $pi^{0}$ and $eta$ photoproduction off the proton.
We investigate the properties of the hidden charm pentaquark-like resonances first observed by LHCb in 2015, by measuring the polarization transfer KLL between the incident photon and the outgoing proton in the exclusive photoproduction of J/psi near threshold. We present a first estimate of the sensitivity of this observable to the pentaquark photocouplings and hadronic branching ratios, and extend our predictions to the case of initial state helicity correlation ALL, using a polarized target. These results serve as a benchmark for the SBS experiment at Jefferson Lab, which proposes to measure for the first time the helicity correlations ALL and KLL in J/psi exclusive photoproduction, in order to determine the pentaquark photocouplings and branching ratios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا