Do you want to publish a course? Click here

On minimal decay at infinity of Hardy-weights

94   0   0.0 ( 0 )
 Added by Hynek Kovarik
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the behaviour of Hardy-weights for a class of variational quasi-linear elliptic operators of $p$-Laplacian type. In particular, we obtain necessary sharp decay conditions at infinity on the Hardy-weights in terms of their integrability with respect to certain integral weights. Some of the results are extended also to nonsymmetric linear elliptic operators. Applications to various examples are discussed as well.



rate research

Read More

We investigate the large-distance asymptotics of optimal Hardy weights on $mathbb Z^d$, $dgeq 3$, via the super solution construction. For the free discrete Laplacian, the Hardy weight asymptotic is the familiar $frac{(d-2)^2}{4}|x|^{-2}$ as $|x|toinfty$. We prove that the inverse-square behavior of the optimal Hardy weight is robust for general elliptic coefficients on $mathbb Z^d$: (1) averages over large sectors have inverse-square scaling, (2), for ergodic coefficients, there is a pointwise inverse-square upper bound on moments, and (3), for i.i.d. coefficients, there is a matching inverse-square lower bound on moments. The results imply $|x|^{-4}$-scaling for Rellich weights on $mathbb Z^d$. Analogous results are also new in the continuum setting. The proofs leverage Greens function estimates rooted in homogenization theory.
88 - Daniel M. Elton 2017
We consider the equation $Delta u=Vu$ in exterior domains in $mathbb{R}^2$ and $mathbb{R}^3$, where $V$ has certain periodicity properties. In particular we show that such equations cannot have non-trivial superexponentially decaying solutions. As an application this leads to a new proof for the absolute continuity of the spectrum of particular periodic Schr{o}dinger operators. The equation $Delta u=Vu$ is studied as part of a broader class of elliptic evolution equations.
We prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincare inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic manifolds with minimal positive Greens function vanishing at infinity. On the source function we assume a sharp pointwise decay depending on the weight appearing in the Poincare inequality and on the behavior of the Ricci curvature at infinity. We do not require any curvature or spectral assumptions on the manifold.
We investigate existence and uniqueness of bounded solutions of parabolic equations with unbounded coefficients in $Mtimes mathbb R_+$, where $M$ is a complete noncompact Riemannian manifold. Under specific assumptions, we establish existence of solutions satisfying prescribed conditions at infinity, depending on the direction along which infinity is approached. Moreover, the large-time behavior of such solutions is studied. We consider also elliptic equations on $M$ with similar conditions at infinity.
234 - Zixiao Liu , Jiguang Bao 2020
We obtain a quantitative high order expansion at infinity of solutions for a family of fully nonlinear elliptic equations on exterior domain, refine the study of the asymptotic behavior of the Monge-Amp`ere equation, the special Lagrangian equation and other elliptic equations, and give the precise gap between exterior maximal (or minimal) gradient graph and the entire case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا