Do you want to publish a course? Click here

Distributed Communication-aware Motion Planning for Networked Mobile Robots under Formal Specifications

73   0   0.0 ( 0 )
 Added by Zhiyu Liu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Control and communication are often tightly coupled in motion planning of networked mobile robots, due to the fact that robotic motions will affect the overall communication quality, and the quality of service (QoS) of the communication among the robots will in turn affect their coordination performance. In this paper, we propose a control theoretical motion planning framework for a team of networked mobile robots in order to accomplish high-level spatial and temporal motion objectives while optimizing communication QoS. Desired motion specifications are formulated as Signal Temporal Logic (STL), whereas the communication performances to be optimized are captured by recently proposed Spatial Temporal Reach and Escape Logic (STREL) formulas. Both the STL and STREL specifications are encoded as mixed integer linear constraints posed on the system and/or environment state variables of the mobile robot network, where satisfactory control strategies can be computed by exploiting a distributed model predictive control (MPC) approach. To the best of the authors knowledge, we are the first to study controller synthesis for STREL specifications. A two-layer hierarchical MPC procedure is proposed to efficiently solve the problem, whose soundness and completeness are formally ensured. The effectiveness of the proposed framework is validated by simulation examples.

rate research

Read More

97 - Zhiyu Liu , Jin Dai , Bo Wu 2017
We propose a mathematical framework for synthesizing motion plans for multi-agent systems that fulfill complex, high-level and formal local specifications in the presence of inter-agent communication. The proposed synthesis framework consists of desired motion specifications in temporal logic (STL) formulas and a local motion controller that ensures the underlying agent not only to accomplish the local specifications but also to avoid collisions with other agents or possible obstacles, while maintaining an optimized communication quality of service (QoS) among the agents. Utilizing a Gaussian fading model for wireless communication channels, the framework synthesizes the desired motion controller by solving a joint optimization problem on motion planning and wireless communication, in which both the STL specifications and the wireless communication conditions are encoded as mixed integer-linear constraints on the variables of the agents dynamical states and communication channel status. The overall framework is demonstrated by a case study of communication-aware multi-robot motion planning and the effectiveness of the framework is validated by simulation results.
101 - Zhiyu Liu , Bo Wu , Jin Dai 2017
In future intelligent transportation systems, networked vehicles coordinate with each other to achieve safe operations based on an assumption that communications among vehicles and infrastructure are reliable. Traditional methods usually deal with the design of control systems and communication networks in a separated manner. However, control and communication systems are tightly coupled as the motions of vehicles will affect the overall communication quality. Hence, we are motivated to study the co-design of both control and communication systems. In particular, we propose a control theoretical framework for distributed motion planning for multi-agent systems which satisfies complex and high-level spatial and temporal specifications while accounting for communication quality at the same time. Towards this end, desired motion specifications and communication performances are formulated as signal temporal logic (STL) and spatial-temporal logic (SpaTeL) formulas, respectively. The specifications are encoded as constraints on system and environment state variables of mixed integer linear programs (MILP), and upon which control strategies satisfying both STL and SpaTeL specifications are generated for each agent by employing a distributed model predictive control (MPC) framework. Effectiveness of the proposed framework is validated by a simulation of distributed communication-aware motion planning for multi-agent systems.
In this paper, we address the problem of stochastic motion planning under partial observability, more specifically, how to navigate a mobile robot equipped with continuous range sensors such as LIDAR. In contrast to many existing robotic motion planning methods, we explicitly consider the uncertainty of the robot state by modeling the system as a POMDP. Recent work on general purpose POMDP solvers is typically limited to discrete observation spaces, and does not readily apply to the proposed problem due to the continuous measurements from LIDAR. In this work, we build upon an existing Monte Carlo Tree Search method, POMCP, and propose a new algorithm POMCP++. Our algorithm can handle continuous observation spaces with a novel measurement selection strategy. The POMCP++ algorithm overcomes over-optimism in the value estimation of a rollout policy by removing the implicit perfect state assumption at the rollout phase. We validate POMCP++ in theory by proving it is a Monte Carlo Tree Search algorithm. Through comparisons with other methods that can also be applied to the proposed problem, we show that POMCP++ yields significantly higher success rate and total reward.
Planning smooth and energy-efficient motions for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, a wide variety of motion planners, steer functions and path-improvement techniques have been proposed for such non-holonomic systems. With the objective of comparing this large assortment of state-of-the-art motion-planning techniques, we introduce a novel open-source motion-planning benchmark for wheeled mobile robots, whose scenarios resemble real-world applications (such as navigating warehouses, moving in cluttered cities or parking), and propose metrics for planning efficiency and path quality. Our benchmark is easy to use and extend, and thus allows practitioners and researchers to evaluate new motion-planning algorithms, scenarios and metrics easily. We use our benchmark to highlight the strengths and weaknesses of several common state-of-the-art motion planners and provide recommendations on when they should be used.
This paper investigates the online motion coordination problem for a group of mobile robots moving in a shared workspace, each of which is assigned a linear temporal logic specification. Based on the realistic assumptions that each robot is subject to both state and input constraints and can have only local view and local information, a fully distributed multi-robot motion coordination strategy is proposed. For each robot, the motion coordination strategy consists of three layers. An offline layer pre-computes the braking area for each region in the workspace, the controlled transition system, and a so-called potential function. An initialization layer outputs an initially safely satisfying trajectory. An online coordination layer resolves conflicts when one occurs. The online coordination layer is further decomposed into three steps. Firstly, a conflict detection algorithm is implemented, which detects conflicts with neighboring robots. Whenever conflicts are detected, a rule is designed to assign dynamically a planning order to each pair of neighboring robots. Finally, a sampling-based algorithm is designed to generate local collision-free trajectories for the robot which at the same time guarantees the feasibility of the specification. Safety is proven to be guaranteed for all robots at any time. The effectiveness and the computational tractability of the resulting solution is verified numerically by two case studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا