Do you want to publish a course? Click here

Light Spring amplification in a multi-frequency Raman amplifier

96   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose to amplify and compress an ultrashort Light Spring laser seed with a long Gaussian-shaped laser pump through Raman amplification. This Light Spring, which has a helical spatio-temporal intensity profile, can be built on the superposition of three distinct laser frequency components. In order to get an independent frequency amplification, two criteria are established. Besides these criteria, a non equal frequency separation is necessary to avoid resonance overlapping when three or more frequencies are involved. The independent set of equations, which describes the wave-wave interaction in a plasma, is solved numerically for two different Light Spring configurations. In both cases, the amplification and transversal compression of the seed laser pulse have been observed, with a final profile similar to that of the usual Gaussian-shaped seed pulses. In addition, two different kinds of helical plasma waves are excited.



rate research

Read More

In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.
Compression of an intense laser pulse using backward Raman amplification (BRA) in plasma, followed by vacuum focusing to a small spot size, can produce unprecedented ultrarelativistic laser intensities. The plasma density inhomogeneity during BRA, however, causes laser phase and amplitude distortions, limiting the pulse focusability. To solve the issue of distortion, we investigate the use of optical phase conjugation as the seed pulse for BRA. We show that the phase conjugated laser pulses can retain focusability in the nonlinear pump-depletion regime of BRA, but not so easily in the linear amplification regime. This somewhat counter-intuitive result is because the nonlinear pump-depletion regime features a shorter amplification distance, and hence less phase distortion due to wave-wave interaction, than the linear amplification regime.
194 - Igor Andriyash 2012
We demonstrate that a mm-scale free electron laser can operate in the X-ray range, in the interaction between a moderately relativistic electron bunch, and a transverse high intensity optical lattice. The corrugated light-induced ponderomotive potential acts simultaneously as a guide and as a low-frequency wiggler, triggering stimulated Raman scattering. The gain law in the small signal regime is derived in a fluid approach, and confirmed from Particle-In-Cell simulations. We describe the nature of bunching, and discuss the saturation properties. The resulting all-optical Raman X-ray laser opens perspectives for ultra-compact coherent light sources up to the hard X-ray range.
The development of parametric instabilities in a large scale inhomogeneous plasma with an incident laser beam composed of multiple-frequency components is studied theoretically and numerically. Firstly, theoretical analyses of the coupling between two laser beamlets with certain frequency difference $deltaomega_0$ for parametric instabilities is presented. It suggests that the two beamlets will be decoupled when $deltaomega_0$ is larger than certain thresholds, which are derived for stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and two plasmon decay (TPD), respectively. In this case, the parametric instabilities for the two beamlets develop independently and can be controlled at a low level provided the laser intensity for individual beamlet is low enough. Secondly, numerical simulations of parametric instabilities with two or more beamlets ($Nsim20$) have been carried out and the above theory model is validated. Simulations confirm that the development of parametric instabilities with multiple beamlets can be controlled at a low level, provided the threshold conditions for $deltaomega_0$ is satisfied, even though the total laser intensity is as high as $sim10^{15}$W/cm$^2$. With such a laser beam structure of multiple frequency components ($Ngtrsim20$) and total bandwidth of a few percentages ($gtrsim4%$), the parametric instabilities can be well-controlled.
Raman and Brillouin amplification are two schemes for amplifying and compressing short laser pulses in plasma. Analytical models have already been derived for both schemes, but the full consequences of these models are little known or used. Here, we present new criteria that govern the evolution of the attractor solution for the seed pulse in Raman and Brillouin amplification, and show how the initial laser pulses need to be shaped to control the properties of the final amplified seed and improve the amplification efficiency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا