Sequentially congruent partitions and related bijections


Abstract in English

We study a curious class of partitions, the parts of which obey an exceedingly strict congruence condition we refer to as sequential congruence: the $m$th part is congruent to the $(m+1)$th part modulo $m$, with the smallest part congruent to zero modulo the length of the partition. It turns out these obscure-seeming objects are embedded in a natural way in partition theory. We show that sequentially congruent partitions with largest part $n$ are in bijection with the partitions of $n$. Moreover, we show sequentially congruent partitions induce a bijection between partitions of $n$ and partitions of length $n$ whose parts obey a strict frequency congruence condition -- the frequency (or multiplicity) of each part is divisible by that part -- and prove families of similar bijections, connecting with G. E. Andrewss theory of partition ideals.

Download