We discuss possible definitions of the Faddeev-Popov matrix for the minimal linear covariant gauge on the lattice and present preliminary results for the ghost propagator.
We present improved upper and lower bounds for the momentum-space ghost propagator of Yang-Mills theories in terms of the two smallest nonzero eigenvalues (and their corresponding eigenvectors) of the Faddeev-Popov matrix. These results are verified using data from four-dimensional numerical simulations of SU(2) lattice gauge theory in minimal Landau gauge at beta = 2.2, for lattice sides N = 16, 32, 48 and 64. Gribov-copy effects are discussed by considering four different sets of numerical minima. We then present a lower bound for the smallest nonzero eigenvalue of the Faddeev-Popov matrix in terms of the smallest nonzero momentum on the lattice and of a parameter characterizing the geometry of the first Gribov region $Omega$. This allows a simple and intuitive description of the infinite-volume limit in the ghost sector. In particular, we show how nonperturbative effects may be quantified by the rate at which typical thermalized and gauge-fixed configurations approach the boundary of Omega, known as the first Gribov horizon. As a result, a simple and concrete explanation emerges for why lattice studies do not observe an enhanced ghost propagator in the deep infrared limit. Most of the simulations have been performed on the Blue Gene/P--IBM supercomputer shared by Rice University and S~ao Paulo University.
The Bose-ghost propagator has been proposed as a carrier of the confining force in Yang-Mills theories in minimal Landau gauge. We present the first numerical evaluation of this propagator, using lattice simulations for the SU(2) gauge group in the scaling region. Our data are well described by a simple fitting function, which is compatible with an infrared-enhanced Bose-ghost propagator. This function can also be related to a massive gluon propagator in combination with an infrared-free (Faddeev-Popov) ghost propagator. Since the Bose-ghost propagator can be written as the vacuum expectation value of a BRST-exact quantity and should therefore vanish in a BRST-invariant theory, our results provide the first numerical manifestation of BRST-symmetry breaking due to restriction of gauge-configuration space to the Gribov region.
We discuss a possible definition of the Faddeev-Popov matrix for the minimal linear covariant gauge on the lattice and present first results for the ghost propagator. We consider Yang-Mills theory in four space-time dimensions, for SU(2) and SU(3) gauge groups.
We discuss the subtleties concerning the lattice computation of the ghost propagator in linear covariant gauges, and present preliminary numerical results.
We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier of the confining force in the Gribov-Zwanziger approach and, as such, its infrared behavior could be relevant for the understanding of color confinement in Yang-Mills theories. Also, its nonzero value can be interpreted as direct evidence of BRST-symmetry breaking, which is induced when restricting the functional measure to the first Gribov region Omega. Our simulations are done for lattice volumes up to 120^4 and for physical lattice extents up to 13.5 fm. We investigate the infinite-volume and continuum limits.