Do you want to publish a course? Click here

Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo

121   0   0.0 ( 0 )
 Added by LSC P&P Committee
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results on the mass, spin, and redshift distributions with phenomenological population models using the ten binary black hole mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the binary black hole (BBH) mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive black hole in such binaries is well approximated by models with no more than 1% of black holes more massive than $45,M_odot$, and a power law index of $alpha = {1.3}^{+1.4}_{-1.7}$ (90% credibility). We also show that BBHs are unlikely to be composed of black holes with large spins aligned to the orbital angular momentum. Modelling the evolution of the BBH merger rate with redshift, we show that it is at or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of $R = {53.2}^{+55.8}_{-28.2}$ Gpc$^{-3}$ yr$^{-1}$ (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of black holes via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of black holes across cosmic time.



rate research

Read More

When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses minimal assumptions on the morphology of the transient gravitational waveform. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models.
Advanced LIGO and Advanced Virgo are actively monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are the gravitational-wave strain arrays, released as time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software.
Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses $M=m_1+m_2in[120,800]$M$_odot$ and mass ratios $q = m_2/m_1 in[0.1,1.0]$. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of $0.20$~Gpc$^{-3}$yr$^{-1}$ (in co-moving units at the 90% confidence level) for equal-mass binaries with individual masses $m_{1,2}=100$M$_odot$ and dimensionless spins $chi_{1,2}= 0.8$ aligned with the orbital angular momentum of the binary. This improves by a factor of $sim 5$ that reported after Advanced LIGOs first observing run.
We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. For neutrino-driven explosions the distance at which we reach 50% detection efficiency is approaching 5 kpc, and for magnetorotationally-driven explosions is up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes we constrained the gravitational-wave energy emitted during core-collapse at the levels of $4.27times 10^{-4},M_odot c^2$ and $1.28times 10^{-1},M_odot c^2$ for emissions at 235 Hz and 1304 Hz respectively. These constraints are two orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo and GEO 600 data.
Gravitational wave echoes have been proposed as a smoking-gun signature of exotic compact objects with near-horizon structure. Recently there have been observational claims that echoes are indeed present in stretches of data from Advanced LIGO and Advanced Virgo immediately following gravitational wave signals from presumed binary black hole mergers, as well as a binary neutron star merger. In this paper we deploy a morphology-independent search algorithm for echoes introduced in Tsang et al., Phys. Rev. D 98, 024023 (2018), which (a) is able to accurately reconstruct a possible echoes signal with minimal assumptions about their morphology, and (b) computes Bayesian evidences for the hypotheses that the data contain a signal, an instrumental glitch, or just stationary, Gaussian noise. Here we apply this analysis method to all the significant events in the first Gravitational Wave Transient Catalog (GWTC-1), which comprises the signals from binary black hole and binary neutron star coalescences found during the first and second observing runs of Advanced LIGO and Advanced Virgo. In all cases, the ratios of evidences for signal versus noise and signal versus glitch do not rise above their respective background distributions obtained from detector noise, the smallest $p$-value being 3% (for event GW170823). Hence we find no statistically significant evidence for echoes in GWTC-1.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا