Do you want to publish a course? Click here

A quest for shear banding in ideal and non ideal colloidal rods

83   0   0.0 ( 0 )
 Added by Christian Lang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We assess the possibility of shear banding of semidilute rod-like colloidal suspensions under steady shear ow very close to the isotropic-nematic spinodal, using a combination of rheology, small angle neutron scattering, and laser Doppler velocimetry. Model systems are employed which allow for a length and stiffness variation of the particles. The rheological signature reveals that these systems are strongly shear thinning at moderate shear rates. It is shown that the longest and most flexible rods undergo the strongest shear thinning and have the greatest potential to form shear bands. Although we find a small but significant gradient of the orientational order parameter throughout the gap of the shear cell, no shear banding transition is tractable in the region of intermediate shear rates. At very low shear rates, gradient banding and wall slip occur simultaneously, but the shear bands are not stable over time.



rate research

Read More

We report experiments on hard sphere colloidal glasses that reveal a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability arising from shear-concentration coupling, a mechanism previously thought unimportant in this class of materials. Below a characteristic shear rate $dotgamma_c$ we observe increasingly non-linear velocity profiles and strongly localized flows. We attribute this trend to very slight concentration gradients (likely to evade direct detection) arising in the unstable flow regime. A simple model accounts for both the observed increase of $dotgamma_c$ with concentration, and the fluctuations observed in the flow.
We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of which is linearly stable against general two-dimensional perturbations. This is in contrast to analogous results for the Johnson-Segalman model, which includes normal stresses, and which has been reported to be linearly unstable for general two-dimensional perturbations. This strongly suggests that the linear instabilities found in the Johnson-Segalman can be attributed to normal stress effects.
Complex fluids containing low concentrations of slender colloidal rods can display a high viscosity, while little flow is needed to thin the fluid. This feature makes slender rods essential constituents in industrial applications and biology. Though this behaviour strongly depends on the rod-length, so far no direct relation could be identified. We employ a library of filamentous viruses to study the effect of rod size and flexibility on the zero-shear viscosity and shear-thinning behaviour. Rheology and small angle neutron scattering data are compared to a revised version of the standard theory for ideally stiff rods, which incorporates a complete shear-induced dilation of the confinement. While the earlier predicted length-independent pre-factor of the restricted rotational diffusion coefficient is confirmed by varying the length and concentration of the rods, the revised theory correctly predicts the shear thinning behaviour as well as the underlying orientational order. These results can be directly applied to understand the manifold systems based on rod-like colloids and design new materials.
Bacterial suspensions--a premier example of active fluids--show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a superfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear-banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides new insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes.
145 - Guillaume Ovarlez 2010
We study the steady flow properties of different three-dimensional aqueous foams in a wide gap Couette geometry. From local velocity measurements through Magnetic Resonance Imaging techniques and from viscosity bifurcation experiments, we find that these foams do not exhibit any observable signature of shear banding. This contrasts with two previous results (Rodts et al., Europhys. Lett., 69 (2005) 636 and Da Cruz et al., Phys. Rev. E, 66 (2002) 051305); we discuss possible reasons for this dicrepancy. Moreover, the foams we studied undergo steady flow for shear rates well below the critical shear rate recently predicted (Denkov et al., Phys. Rev. Lett., 103 (2009) 118302). Local measurements of the constitutive law finally show that these foams behave as simple Herschel-Bulkley yield stress fluids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا