Do you want to publish a course? Click here

Beltrami-Net: Domain Independent Deep D-bar Learning for Absolute Imaging with Electrical Impedance Tomography (a-EIT)

68   0   0.0 ( 0 )
 Added by Sarah Hamilton
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Objective: To develop, and demonstrate the feasibility of, a novel image reconstruction method for absolute Electrical Impedance Tomography (a-EIT) that pairs deep learning techniques with real-time robust D-bar methods. Approach: A D-bar method is paired with a trained Convolutional Neural Network (CNN) as a post-processing step. Training data is simulated for the network using no knowledge of the boundary shape by using an associated nonphysical Beltrami equation rather than simulating the traditional current and voltage data specific to a given domain. This allows the training data to be boundary shape independent. The method is tested on experimental data from two EIT systems (ACT4 and KIT4). Main Results: Post processing the D-bar images with a CNN produces significant improvements in image quality measured by Structural SIMilarity indices (SSIMs) as well as relative $ell_2$ and $ell_1$ image errors. Significance: This work demonstrates that more general networks can be trained without being specific about boundary shape, a key challenge in EIT image reconstruction. The work is promising for future studies involving databases of anatomical atlases.



rate research

Read More

The mathematical problem for Electrical Impedance Tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features such as clear organ boundaries. Convolutional Neural Networks provide a powerful framework for post-processing such convolved direct reconstructions. In this study, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.
A method for including a priori information in the 2-D D-bar algorithm is presented. Two methods of assigning conductivity values to the prior are presented, each corresponding to a different scenario on applications. The method is tested on several numerical examples with and without noise and is demonstrated to be highly effective in improving the spatial resolution of the D-bar method.
In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known emph{a priori} that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called {em CGO sinogram}. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.
Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is a severely ill-posed nonlinear inverse problem that is highly sensitive to measurement noise and modeling errors. Regularized D-bar methods have shown great promise in producing noise-robust algorithms by employing a low-pass filtering of nonlinear (nonphysical) Fourier transform data specific to the EIT problem. Including prior data with the approximate locations of major organ boundaries in the scattering transform provides a means of extending the radius of the low-pass filter to include higher frequency components in the reconstruction, in particular, features that are known with high confidence. This information is additionally included in the system of D-bar equations with an independent regularization parameter from that of the extended scattering transform. In this paper, this approach is used in the 2-D D-bar method for admittivity (conductivity as well as permittivity) EIT imaging. Noise-robust reconstructions are presented for simulated EIT data on chest-shaped phantoms with a simulated pneumothorax and pleural effusion. No assumption of the pathology is used in the construction of the prior, yet the method still produces significant enhancements of the underlying pathology (pneumothorax or pleural effusion) even in the presence of strong noise.
86 - S.J. Hamilton , J.L. Mueller , 2017
Objective: Absolute images have important applications in medical Electrical Impedance Tomography (EIT) imaging, but the traditional minimization and statistical based computations are very sensitive to modeling errors and noise. In this paper, it is demonstrated that D-bar reconstruction methods for absolute EIT are robust to such errors. Approach: The effects of errors in domain shape and electrode placement on absolute images computed with 2D D-bar reconstruction algorithms are studied on experimental data. Main Results: It is demonstrated with tank data from several EIT systems that these methods are quite robust to such modeling errors, and furthermore the artefacts arising from such modeling errors are similar to those occurring in classic time-difference EIT imaging. Significance: This study is promising for clinical applications where absolute EIT images are desirable, but previously thought impossible.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا