Branching structures emerging from a continuous optimal transport model


Abstract in English

Recently a Dynamic-Monge-Kantorovich formulation of the PDE-based $L^1$-optimal transport problem was presented. The model considers a diffusion equation enforcing the balance of the transported masses with a time-varying conductivity that volves proportionally to the transported flux. In this paper we present an extension of this model that considers a time derivative of the conductivity that grows as a power law of the transport flux with exponent $beta>0$. A sub-linear growth ($0<beta<1$) penalizes the flux intensity and promotes distributed transport, with equilibrium solutions that are reminiscent of Congested Transport Problems. On the contrary, a super-linear growth ($beta>1$) favors flux intensity and promotes concentrated transport, leading to the emergence of steady-state singular and fractal-like configurations that resemble those of Branched Transport Problems. We derive a numerical discretization of the proposed model that is accurate, efficient, and robust for a wide range of scenarios. For $beta>1$ the numerical model is able to reproduce highly irregular and fractal-like formations without any a-priory structural assumption.

Download