Do you want to publish a course? Click here

Hybrid Distortion Aggregated Visual Comfort Assessment for Stereoscopic Image Retargeting

54   0   0.0 ( 0 )
 Added by Ya Zhou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Visual comfort is a quite important factor in 3D media service. Few research efforts have been carried out in this area especially in case of 3D content retargeting which may introduce more complicated visual distortions. In this paper, we propose a Hybrid Distortion Aggregated Visual Comfort Assessment (HDA-VCA) scheme for stereoscopic retargeted images (SRI), considering aggregation of hybrid distortions including structure distortion, information loss, binocular incongruity and semantic distortion. Specifically, a Local-SSIM feature is proposed to reflect the local structural distortion of SRI, and information loss is represented by Dual Natural Scene Statistics (D-NSS) feature extracted from the binocular summation and difference channels. Regarding binocular incongruity, visual comfort zone, window violation, binocular rivalry, and accommodation-vergence conflict of human visual system (HVS) are evaluated. Finally, the semantic distortion is represented by the correlation distance of paired feature maps extracted from original stereoscopic image and its retargeted image by using trained deep neural network. We validate the effectiveness of HDA-VCA on published Stereoscopic Image Retargeting Database (SIRD) and two stereoscopic image databases IEEE-SA and NBU 3D-VCA. The results demonstrate HDA-VCAs superior performance in handling hybrid distortions compared to state-of-the-art VCA schemes.



rate research

Read More

85 - Ya Zhou , Wei Zhou , Ping An 2018
In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception.
115 - Simeng Sun , Tao Yu , Jiahua Xu 2021
A good distortion representation is crucial for the success of deep blind image quality assessment (BIQA). However, most previous methods do not effectively model the relationship between distortions or the distribution of samples with the same distortion type but different distortion levels. In this work, we start from the analysis of the relationship between perceptual image quality and distortion-related factors, such as distortion types and levels. Then, we propose a Distortion Graph Representation (DGR) learning framework for IQA, named GraphIQA, in which each distortion is represented as a graph, ieno, DGR. One can distinguish distortion types by learning the contrast relationship between these different DGRs, and infer the ranking distribution of samples from different levels in a DGR. Specifically, we develop two sub-networks to learn the DGRs: a) Type Discrimination Network (TDN) that aims to embed DGR into a compact code for better discriminating distortion types and learning the relationship between types; b) Fuzzy Prediction Network (FPN) that aims to extract the distributional characteristics of the samples in a DGR and predicts fuzzy degrees based on a Gaussian prior. Experiments show that our GraphIQA achieves the state-of-the-art performance on many benchmark datasets of both synthetic and authentic distortions.
As it is said by Van Gogh, great things are done by a series of small things brought together. Aesthetic experience arises from the aggregation of underlying visual components. However, most existing deep image aesthetic assessment (IAA) methods over-simplify the IAA process by failing to model image aesthetics with clearly-defined visual components as building blocks. As a result, the connection between resulting aesthetic predictions and underlying visual components is mostly invisible and hard to be explicitly controlled, which limits the model in both performance and interpretability. This work aims to model image aesthetics from the level of visual components. Specifically, object-level regions detected by a generic object detector are defined as visual components, namely object-level visual components (OVCs). Then generic features representing OVCs are aggregated for the aesthetic prediction based upon proposed object-level and graph attention mechanisms, which dynamically determines the importance of individual OVCs and relevance between OVC pairs, respectively. Experimental results confirm the superiority of our framework over previous relevant methods in terms of SRCC and PLCC on the aesthetic rating distribution prediction. Besides, quantitative analysis is done towards model interpretation by observing how OVCs contribute to aesthetic predictions, whose results are found to be supported by psychology on aesthetics and photography rules. To the best of our knowledge, this is the first attempt at the interpretation of a deep IAA model.
Distributed visual analysis applications, such as mobile visual search or Visual Sensor Networks (VSNs) require the transmission of visual content on a bandwidth-limited network, from a peripheral node to a processing unit. Traditionally, a Compress-Then-Analyze approach has been pursued, in which sensing nodes acquire and encode the pixel-level representation of the visual content, that is subsequently transmitted to a sink node in order to be processed. This approach might not represent the most effective solution, since several analysis applications leverage a compact representation of the content, thus resulting in an inefficient usage of network resources. Furthermore, coding artifacts might significantly impact the accuracy of the visual task at hand. To tackle such limitations, an orthogonal approach named Analyze-Then-Compress has been proposed. According to such a paradigm, sensing nodes are responsible for the extraction of visual features, that are encoded and transmitted to a sink node for further processing. In spite of improved task efficiency, such paradigm implies the central processing node not being able to reconstruct a pixel-level representation of the visual content. In this paper we propose an effective compromise between the two paradigms, namely Hybrid-Analyze-Then-Compress (HATC) that aims at jointly encoding visual content and local image features. Furthermore, we show how a target tradeoff between image quality and task accuracy might be achieved by accurately allocating the bitrate to either visual content or local features.
Existing blind image quality assessment (BIQA) methods are mostly designed in a disposable way and cannot evolve with unseen distortions adaptively, which greatly limits the deployment and application of BIQA models in real-world scenarios. To address this problem, we propose a novel Lifelong blind Image Quality Assessment (LIQA) approach, targeting to achieve the lifelong learning of BIQA. Without accessing to previous training data, our proposed LIQA can not only learn new distortions, but also mitigate the catastrophic forgetting of seen distortions. Specifically, we adopt the Split-and-Merge distillation strategy to train a single-head network that makes task-agnostic predictions. In the split stage, we first employ a distortion-specific generator to obtain the pseudo features of each seen distortion. Then, we use an auxiliary multi-head regression network to generate the predicted quality of each seen distortion. In the merge stage, we replay the pseudo features paired with pseudo labels to distill the knowledge of multiple heads, which can build the final regressed single head. Experimental results demonstrate that the proposed LIQA method can handle the continuous shifts of different distortion types and even datasets. More importantly, our LIQA model can achieve stable performance even if the task sequence is long.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا