Do you want to publish a course? Click here

CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17

98   0   0.0 ( 0 )
 Added by Kelley M. Hess
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among the worst affected by radio frequency interference (RFI). While this represents only 10% of the total frequency coverage and 18% of the total expected time on source compared to what will be the full CHILES survey, we demonstrate that our data reduction pipeline recovers high quality data even in regions severely impacted by RFI. We report on our in-depth testing of an automated spectral line source finder to produce HI total intensity maps which we present side-by-side with significance maps to evaluate the reliability of the morphology recovered by the source finder. We recommend that this become a common place manner of presenting data from upcoming HI surveys of resolved objects. We use the COSMOS 20k group catalogue, and we extract filamentary structure using the topological DisPerSE algorithm to evaluate the hi morphology in the context of both local and large-scale environments and we discuss the shortcomings of both methods. Many of the detections show disturbed HI morphologies suggesting they have undergone a recent interaction which is not evident from deep optical imaging alone. Overall, the sample showcases the broad range of ways in which galaxies interact with their environment. This is a first look at the population of galaxies and their local and large-scale environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.



rate research

Read More

We study galactic star-formation activity as a function of environment and stellar mass over 0.5<z<2.0 using the FourStar Galaxy Evolution (ZFOURGE) survey. We estimate the galaxy environment using a Bayesian-motivated measure of the distance to the third nearest neighbor for galaxies to the stellar mass completeness of our survey, $log(M/M_odot)>9 (9.5)$ at z=1.3 (2.0). This method, when applied to a mock catalog with the photometric-redshift precision ($sigma_z / (1+z) lesssim 0.02$), recovers galaxies in low- and high-density environments accurately. We quantify the environmental quenching efficiency, and show that at z> 0.5 it depends on galaxy stellar mass, demonstrating that the effects of quenching related to (stellar) mass and environment are not separable. In high-density environments, the mass and environmental quenching efficiencies are comparable for massive galaxies ($log (M/M_odot)gtrsim$ 10.5) at all redshifts. For lower mass galaxies ($log (M/M)_odot) lesssim$ 10), the environmental quenching efficiency is very low at $zgtrsim$ 1.5, but increases rapidly with decreasing redshift. Environmental quenching can account for nearly all quiescent lower mass galaxies ($log(M/M_odot) sim$ 9-10), which appear primarily at $zlesssim$ 1.0. The morphologies of lower mass quiescent galaxies are inconsistent with those expected of recently quenched star-forming galaxies. Some environmental process must transform the morphologies on similar timescales as the environmental quenching itself. The evolution of the environmental quenching favors models that combine gas starvation (as galaxies become satellites) with gas exhaustion through star-formation and outflows (overconsumption), and additional processes such as galaxy interactions, tidal stripping and disk fading to account for the morphological differences between the quiescent and star-forming galaxy populations.
136 - J. Blue Bird , J. Davis , N. Luber 2019
We present neutral hydrogen (HI) and ionized hydrogen (H${alpha}$) observations of ten galaxies out to a redshift of 0.1. The HI observations are from the first epoch (178 hours) of the COSMOS HI Large Extragalactic Survey (CHILES). Our sample is HI biased and consists of ten late-type galaxies with HI masses that range from $1.8times10^{7}$ M$_{odot}$ to $1.1times10^{10}$ M$_{odot}$. We find that although the majority of galaxies show irregularities in the morphology and kinematics, they generally follow the scaling relations found in larger samples. We find that the HI and H${alpha}$ velocities reach the flat part of the rotation curve. We identify the large-scale structure in the nearby CHILES volume using DisPerSE with the spectroscopic catalog from SDSS. We explore the gaseous properties of the galaxies as a function of location in the cosmic web. We also compare the angular momentum vector (spin) of the galaxies to the orientation of the nearest cosmic web filament. Our results show that galaxy spins tend to be aligned with cosmic web filaments and show a hint of a transition mass associated with the spin angle alignment.
We study the significance of mergers in the quenching of star formation in galaxies at z~1 by examining their color-mass distributions for different morphology types. We perform two-dimensional light profile fits to GOODS iz images of ~5000 galaxies and X-ray selected active galactic nucleus (AGN) hosts in the CANDELS/GOODS-north and south fields in the redshift range 0.7<z<1.3. Distinguishing between bulge-dominated and disk-dominated morphologies, we find that disks and spheroids have distinct color-mass distributions, in agreement with studies at z~0. The smooth distribution across colors for the disk galaxies corresponds to a slow exhaustion of gas, with no fast quenching event. Meanwhile, blue spheroids most likely come from major mergers of star-forming disk galaxies, and the dearth of spheroids at intermediate green colors is suggestive of rapid quenching. The distribution of moderate luminosity X-ray AGN hosts is even across colors, in contrast, and we find similar numbers and distributions among the two morphology types with no apparent dependence on Eddington ratio. The high fraction of bulge-dominated galaxies that host an AGN in the blue cloud and green valley is consistent with the scenario in which the AGN is triggered after a major merger, and the host galaxy then quickly evolves into the green valley. This suggests AGN feedback may play a role in the quenching of star formation in the minority of galaxies that undergo major mergers.
[abridged] New near-infrared surveys, using the HST, offer an unprecedented opportunity to study rest-frame optical galaxy morphologies at z>1 and to calibrate automated morphological parameters that will play a key role in classifying future massive datasets like EUCLID or LSST. We study automated parameters (e.g. CAS, Gini, M20) of massive galaxies at 1<z<3, measure their dependence on wavelength and evolution with redshift and quantify the reliability of these parameters in discriminating between visually-determined morphologies, using machine learning algorithms. We find that the relative trends between morphological types observed in the low-redshift literature are preserved at z>1: bulge-dominated systems have systematically higher concentration and Gini coefficients and are less asymmetric and rounder than disk-dominated galaxies. However, at z>1, galaxies are, on average, 50% more asymmetric and have Gini and M20 values that are 10% higher and 20% lower respectively. In bulge-dominated galaxies, morphological parameters derived from the rest-frame UV and optical wavelengths are well correlated; however late-type galaxies exhibit higher asymmetry and clumpiness when measured in the rest-frame UV. We find that broad morphological classes (e.g. bulge vs. disk dominated) can be distinguished using parameters with high (80%) purity and completeness of 80%. In a similar vein, irregular disks and mergers can also be distinguished from bulges and regular disks with a contamination lower than 20%. However, mergers cannot be differentiated from the irregular morphological class using these parameters, due to increasingly asymmetry of non-interacting late-type galaxies at z>1. Our automated procedure is applied to the CANDELS GOODS-S field and compared with the visual classification recently released on the same area getting similar results.
We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. Twenty galaxies are detected in HI in this $zsim0.044$ group, with a $3sigma$ column density sensitivity of $N_mathrm{HI} = 1.6times10^{20},mathrm{cm}^{-2}$. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially-resolved HI total intensity and velocity maps for each of the objects, which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of $log_{10}(M_mathrm{dyn}/mathrm{M}_odot) = 12.32$, and is unusually gas-rich, with an HI-to-stellar mass ratio of $log_{10}(f_mathrm{HI}^mathrm{*}) = -0.2$, which is 0.7 dex greater than expected. The groups high HI content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially-resolved HI in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا