No Arabic abstract
In this work we present an algebraic proof of the renormazibility of the super-Yang-Mills action quantized in a generalized supersymmetric version of the maximal Abelian gauge. The main point stated here is that the generalized gauge depends on a set of infinity gauge parameters in order to take into account all possible composite operators emerging from the dimensionless character of the vector superfield. At the end, after the removal of all ultraviolet divergences, it is possible to specify values to the gauge parameters in order to return to the original supersymmetric maximal Abelian gauge, first presented in Phys. Rev. D91, no. 12, 125017 (2015), Ref. [1].
The effects of the Gribov copies on the gluon and ghost propagators are investigated in SU(2) Euclidean Yang-Mills theory quantized in the maximal Abelian gauge. By following Gribovs original approach, extended to the maximal Abelian gauge, we are able to show that the diagonal component of the gluon propagator displays the characteristic Gribov type behavior. The off-diagonal component is found to be of the Yukawa type, with a dynamical mass originating from the dimension two gluon condensate, which is also taken into account. Furthermore, the off-diagonal ghost propagator exhibits infrared enhancement. Finally, we make a comparison with available lattice data.
We study decomposition of $SU(2)$ gauge field into monopole and monopoleless components. After fixing the Maximal Abelian gauge in $SU(2)$ lattice gauge theory we decompose the nonabelian gauge field into the Abelian field created by monopoles and the modified nonabelian field with monopoles removed. We then calculate respective static potentialis and show that the potential due to the modified nonabelian field is nonconfining while, as is well known, the Abelian field produces linear potential. We further find that the sum of these potentials approximates the nonabelian static potential with good precision at all distances considered. We conclude that at large distances the monopole field potential describes the classical energy of the hadronic string while the static potential due to the modified nonabelian field describes the string fluctuations energy.
We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a combined use of the local composite operators technique with algebraic renormalization and we discuss the gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy, due to the mass dimension two condensate discussed here, with the non-trivial vacuum energy originating from the condensate <A^2>, which has attracted much attention in the Landau gauge.
We present the gravity dual of large N supersymmetric gauge theories on a squashed five-sphere. The one-parameter family of solutions is constructed in Euclidean Romans F(4) gauged supergravity in six dimensions, and uplifts to massive type IIA supergravity. By renormalizing the theory with appropriate counterterms we evaluate the renormalized on-shell action for the solutions. We also evaluate the large N limit of the gauge theory partition function, and find precise agreement.
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric ${cal N}{=}1$ QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Greens functions using both dimensional and lattice regularizations. Our lattice formulation involves the Wilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is $SU(N_c)$, while the number of colors, $N_c$, the number of flavors, $N_f$, and the gauge parameter, $alpha$, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant ($Z_g$) and of the quark ($Z_psi$), gluon ($Z_u$), gluino ($Z_lambda$), squark ($Z_{A_pm}$), and ghost ($Z_c$) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.