Do you want to publish a course? Click here

Iterative Residual CNNs for Burst Photography Applications

405   0   0.0 ( 0 )
 Added by Filippos Kokkinos
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Modern inexpensive imaging sensors suffer from inherent hardware constraints which often result in captured images of poor quality. Among the most common ways to deal with such limitations is to rely on burst photography, which nowadays acts as the backbone of all modern smartphone imaging applications. In this work, we focus on the fact that every frame of a burst sequence can be accurately described by a forward (physical) model. This in turn allows us to restore a single image of higher quality from a sequence of low quality images as the solution of an optimization problem. Inspired by an extension of the gradient descent method that can handle non-smooth functions, namely the proximal gradient descent, and modern deep learning techniques, we propose a convolutional iterative network with a transparent architecture. Our network, uses a burst of low quality image frames and is able to produce an output of higher image quality recovering fine details which are not distinguishable in any of the original burst frames. We focus both on the burst photography pipeline as a whole, i.e. burst demosaicking and denoising, as well as on the traditional Gaussian denoising task. The developed method demonstrates consistent state-of-the art performance across the two tasks and as opposed to other recent deep learning approaches does not have any inherent restrictions either to the number of frames or their ordering. Code can be found at https://fkokkinos.github.io/deep_burst/



rate research

Read More

Single-photon avalanche diodes (SPADs) are an emerging sensor technology capable of detecting individual incident photons, and capturing their time-of-arrival with high timing precision. While these sensors were limited to single-pixel or low-resolution devices in the past, recently, large (up to 1 MPixel) SPAD arrays have been developed. These single-photon cameras (SPCs) are capable of capturing high-speed sequences of binary single-photon images with no read noise. We present quanta burst photography, a computational photography technique that leverages SPCs as passive imaging devices for photography in challenging conditions, including ultra low-light and fast motion. Inspired by recent success of conventional burst photography, we design algorithms that align and merge binary sequences captured by SPCs into intensity images with minimal motion blur and artifacts, high signal-to-noise ratio (SNR), and high dynamic range. We theoretically analyze the SNR and dynamic range of quanta burst photography, and identify the imaging regimes where it provides significant benefits. We demonstrate, via a recently developed SPAD array, that the proposed method is able to generate high-quality images for scenes with challenging lighting, complex geometries, high dynamic range and moving objects. With the ongoing development of SPAD arrays, we envision quanta burst photography finding applications in both consumer and scientific photography.
Recently, the power of unconditional image synthesis has significantly advanced through the use of Generative Adversarial Networks (GANs). The task of inverting an image into its corresponding latent code of the trained GAN is of utmost importance as it allows for the manipulation of real images, leveraging the rich semantics learned by the network. Recognizing the limitations of current inversion approaches, in this work we present a novel inversion scheme that extends current encoder-based inversion methods by introducing an iterative refinement mechanism. Instead of directly predicting the latent code of a given real image using a single pass, the encoder is tasked with predicting a residual with respect to the current estimate of the inverted latent code in a self-correcting manner. Our residual-based encoder, named ReStyle, attains improved accuracy compared to current state-of-the-art encoder-based methods with a negligible increase in inference time. We analyze the behavior of ReStyle to gain valuable insights into its iterative nature. We then evaluate the performance of our residual encoder and analyze its robustness compared to optimization-based inversion and state-of-the-art encoders.
Modern digital cameras rely on the sequential execution of separate image processing steps to produce realistic images. The first two steps are usually related to denoising and demosaicking where the former aims to reduce noise from the sensor and the latter converts a series of light intensity readings to color images. Modern approaches try to jointly solve these problems, i.e. joint denoising-demosaicking which is an inherently ill-posed problem given that two-thirds of the intensity information is missing and the rest are perturbed by noise. While there are several machine learning systems that have been recently introduced to solve this problem, the majority of them relies on generic network architectures which do not explicitly take into account the physical image model. In this work we propose a novel algorithm which is inspired by powerful classical image regularization methods, large-scale optimization, and deep learning techniques. Consequently, our derived iterative optimization algorithm, which involves a trainable denoising network, has a transparent and clear interpretation compared to other black-box data driven approaches. Our extensive experimentation line demonstrates that our proposed method outperforms any previous approaches for both noisy and noise-free data across many different datasets. This improvement in reconstruction quality is attributed to the rigorous derivation of an iterative solution and the principled way we design our denoising network architecture, which as a result requires fewer trainable parameters than the current state-of-the-art solution and furthermore can be efficiently trained by using a significantly smaller number of training data than existing deep demosaicking networks. Code and results can be found at https://github.com/cig-skoltech/deep_demosaick
In this work, we present a camera configuration for acquiring stereoscopic dark flash images: a simultaneous stereo pair in which one camera is a conventional RGB sensor, but the other camera is sensitive to near-infrared and near-ultraviolet instead of R and B. When paired with a dark flash (i.e., one having near-infrared and near-ultraviolet light, but no visible light) this camera allows us to capture the two images in a flash/no-flash image pair at the same time, all while not disturbing any human subjects or onlookers with a dazzling visible flash. We present a hardware prototype of this camera that approximates an idealized camera, and we present an imaging procedure that let us acquire dark flash stereo pairs that closely resemble those we would get from that idealized camera. We then present a technique for fusing these stereo pairs, first by performing registration and warping, and then by using recent advances in hyperspectral image fusion and deep learning to produce a final image. Because our camera configuration and our data acquisition process allow us to capture true low-noise long exposure RGB images alongside our dark flash stereo pairs, our learned model can be trained end-to-end to produce a fused image that retains the color and tone of a real RGB image while having the low-noise properties of a flash image.
3D photography is a new medium that allows viewers to more fully experience a captured moment. In this work, we refer to a 3D photo as one that displays parallax induced by moving the viewpoint (as opposed to a stereo pair with a fixed viewpoint). 3D photos are static in time, like traditional photos, but are displayed with interactive parallax on mobile or desktop screens, as well as on Virtual Reality devices, where viewing it also includes stereo. We present an end-to-end system for creating and viewing 3D photos, and the algorithmic and design choices therein. Our 3D photos are captured in a single shot and processed directly on a mobile device. The method starts by estimating depth from the 2D input image using a new monocular depth estimation network that is optimized for mobile devices. It performs competitively to the state-of-the-art, but has lower latency and peak memory consumption and uses an order of magnitude fewer parameters. The resulting depth is lifted to a layered depth image, and new geometry is synthesized in parallax regions. We synthesize color texture and structures in the parallax regions as well, using an inpainting network, also optimized for mobile devices, on the LDI directly. Finally, we convert the result into a mesh-based representation that can be efficiently transmitted and rendered even on low-end devices and over poor network connections. Altogether, the processing takes just a few seconds on a mobile device, and the result can be instantly viewed and shared. We perform extensive quantitative evaluation to validate our system and compare its new components against the current state-of-the-art.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا