Do you want to publish a course? Click here

Distribution of high-dimensional orbital angular momentum entanglement at telecom wavelength over 1km of optical fibre

76   0   0.0 ( 0 )
 Added by Huan Cao
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-dimensional entanglement has demonstrated potential for increasing channel capacity and resistance to noise in quantum information processing. However, its distribution is a challenging task, imposing a severe restriction on its application. Here we report the first distribution of three-dimensional orbital angular momentum (OAM) entanglement via a 1-km-long optical fibre. Using an actively-stabilizing phase pre-compensation technique, we successfully transport one photon of a three-dimensional OAM entangled photon pair through the fibre. The distributed OAM entangled state still shows a fidelity up to 71% with respect to the three-dimensional maximal-entangled-state (MES). In addition, we certify that the high-dimensional quantum entanglement survives the transportation by violating a generalized Bell inequality, obtaining a violation of $sim3$ standard deviations with $I_{3}=2.12pm0.04$. The method we developed can be extended to higher OAM dimension and larger distances in principle. Our results make a significant step towards future OAM-based high-dimensional long-distance quantum communication.



rate research

Read More

The successful employment of high-dimensional quantum correlations and its integration in telecommunication infrastructures is vital in cutting-edge quantum technologies for increasing robustness and key generation rate. Position-momentum Einstein-Podolsky-Rosen (EPR) entanglement of photon pairs are a promising resource of such high-dimensional quantum correlations. Here, we experimentally certify EPR correlations of photon pairs generated by spontaneous parametric down-conversion (SPDC) in a nonlinear crystal with type-0 phase-matching at telecom wavelength for the first time. To experimentally observe EPR entanglement, we perform scanning measurements in the near- and far-field planes of the signal and idler modes. We certify EPR correlations with high statistical significance of up to 45 standard deviations. Furthermore, we determine the entanglement of formation of our source to be greater than one, which gives evidence for the the high-dimensional entanglement between the photons. Operating at telecom wavelengths around 1550 nm, our source is compatible with todays deployed telecommunication infrastructure, thus paving the way for integrating sources of high-dimensional entanglement into quantum-communication infrastructures.
So far experimental confirmation of entanglement has been restricted to qubits, i.e. two-state quantum systems including recent realization of three- and four-qubit entanglements. Yet, an ever increasing body of theoretical work calls for entanglement in quantum system of higher dimensions. Here we report the first realization of multi-dimensional entanglement exploiting the orbital angular momentum of photons, which are states of the electromagnetic field with phase singularities (doughnut modes). The properties of such states could be of importance for the efforts in the field of quantum computation and quantum communication. For example, quantum cryptography with higher alphabets could enable one to increase the information flux through the communication channels.
Techniques for the distribution of quantum-secured cryptographic keys have reached a level of maturity allowing them to be implemented in all kinds of environments, away from any form of laboratory infrastructure. Here, we detail the distribution of entanglement between Malta and Sicily over a 96 km-long submarine telecommunications optical fibre cable. We used this standard telecommunications fibre as a quantum channel to distribute polarisation-entangled photons and were able to observe around 257 photon pairs per second, with a polarisation visibility above 90%. Our experiment demonstrates the feasibility of using deployed submarine telecommunications optical fibres as long-distance quantum channels for polarisation-entangled photons. This opens up a plethora of possibilities for future experiments and technological applications using existing infrastructure.
The realization of a future quantum Internet requires processing and storing quantum information at local nodes, and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory has been reported. Here we demonstrate the storage and faithful recall of the state of a 1532 nm wavelength photon, entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20 meter-long silicate fibre using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality. Furthermore, it facilitates novel tests of light-matter interaction and collective atomic effects in unconventional materials.
When shared between remote locations, entanglement opens up fundamentally new capabilities for science and technology [1, 2]. Envisioned quantum networks distribute entanglement between their remote matter-based quantum nodes, in which it is stored, processed and used [1]. Pioneering experiments have shown how photons can distribute entanglement between single ions or single atoms a few ten meters apart [3, 4] and between two nitrogen-vacancy centres 1 km apart [5]. Here we report on the observation of entanglement between matter (a trapped ion) and light (a photon) over 50~km of optical fibre: a practical distance to start building large-scale quantum networks. Our methods include an efficient source of light-matter entanglement via cavity-QED techniques and a quantum photon converter to the 1550~nm telecom C band. Our methods provide a direct path to entangling remote registers of quantum-logic capable trapped-ion qubits [6 - 8], and the optical atomic clock transitions that they contain [9, 10], spaced by hundreds of kilometers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا