Do you want to publish a course? Click here

Pair production in differently polarized electric fields with frequency chirps

67   0   0.0 ( 0 )
 Added by Bai-Song Xie
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Electron-positron pair production in strong electric fields, i.e., the Sauter-Schwinger effect, is studied using the real-time Dirac-Heisenberg-Wigner formalism. Hereby, the electric field is modeled to be a homogeneous, single-pulse field with subcritical peak field strength. Momentum spectra are calculated for four different polarizations - linear, elliptic, near-circular elliptic or circular - as well as a number of linear frequency chirps. With details depending on the chosen polarization the frequency chirps lead to strong interference effects and thus quite substantial changes in the momentum spectra. The resulting produced pairs number densities depend non-linearly on the parameter characterizing the polarization and are very sensitive to variations of the chirp parameter. For some of the investigated frequency chirps this can provide an enhancement of the number density by three to four orders of magnitude.



rate research

Read More

349 - J. Debove 2008
We present an exploratory study of gaugino-pair production in polarized and unpolarized hadron collisions, focusing on the correlation of beam polarization and gaugino/Higgsino mixing in the general Minimal Supersymmetric Standard Model. Helicity-dependent cross sections induced by neutral and charged electroweak currents and squark exchanges are computed analytically in terms of generalized charges, defined similarly for chargino-pair, neutralino-chargino associated, and neutralino-pair production. Our results confirm and extend those obtained previously for negligible Yukawa couplings and nonmixing squarks. Assuming that the lightest chargino mass is known, we show numerically that measurements of the longitudinal single-spin asymmetry at the existing polarized pp collider RHIC and at possible polarization upgrades of the Tevatron or the LHC would allow for a determination of the gaugino/Higgsino fractions of charginos and neutralinos. The theoretical uncertainty coming from factorization scale and squark mass variations and the expected experimental error on the lightest chargino mass is generally smaller than the one induced by the polarized parton densities, so that more information on the latter would considerably improve on the analysis.
We discuss pair creation in a strong laser background. Using lightfront field theory, we show that all the physics is contained in the lightfront momentum transfer from the laser, and probe, to the produced pair. The dependence of this momentum transfer on the geometry of the laser leads to resonance and diffraction effects in pair production spectra. The lightfront approach naturally explains the interpretation of laser-stimulated pair production as a multi-photon process creating pairs of an effective mass.
We consider the azimuthal $cos varphi$ and $cos 2varphi$ distributions and the Callan-Gross ratio $R={rm d}sigma_L/{rm d}sigma_T$ in heavy-quark pair electroproduction, $lNrightarrow l^{prime}Qbar{Q}X$, as probes of linearly polarized gluons in unpolarized nucleons. Our analysis shows that the azimuthal asymmetries and Callan-Gross ratio are predicted to be large and very sensitive to the contribution of the gluonic counterpart of the Boer-Mulders function, $h_{1}^{perp g}$, describing the linear polarization of gluons inside unpolarized nucleon. In particular, the maximum values of the azimuthal distributions vary from 0 to 1 depending on $h_{1}^{perp g}$. We conclude that future measurements of these quantities at the proposed EIC and LHeC colliders could clarify in details the proton spin decomposition puzzle.
Electric fields can spontaneously decay via the Schwinger effect, the nucleation of a charged particle-anti particle pair separated by a critical distance $d$. What happens if the available distance is smaller than $d$? Previous work on this question has produced contradictory results. Here, we study the quantum evolution of electric fields when the field points in a compact direction with circumference $L < d$ using the massive Schwinger model, quantum electrodynamics in one space dimension with massive charged fermions. We uncover a new and previously unknown set of instantons that result in novel physics that disagrees with all previous estimates. In parameter regimes where the field value can be well-defined in the quantum theory, generic initial fields $E$ are in fact stable and do not decay, while initial values that are quantized in half-integer units of the charge $E = (k/2) g$ with $kin mathbb Z$ oscillate in time from $+(k/2) g$ to $-(k/2) g$, with exponentially small probability of ever taking any other value. We verify our results with four distinct techniques: numerically by measuring the decay directly in Lorentzian time on the lattice, numerically using the spectrum of the Hamiltonian, numerically and semi-analytically using the bosonized description of the Schwinger model, and analytically via our instanton estimate.
We study the vacuum pair production by a time-dependent strong electric field based on the exact WKB analysis. We identify the generic structure of a Stokes graph for systems with the vacuum pair production and show that the number of produced pairs is given by a product of connection matrices for Stokes segments connecting pairs of turning points. We derive an explicit formula for the number of produced pairs, assuming the semi-classical limit. The obtained formula can be understood as a generalization of the divergent asymptotic series method by Berry, and is consistent with other semi-classical methods such as the worldline instanton method and the steepest descent evaluation of the Bogoliubov coefficients done by Brezin and Izykson. We also use the formula to discuss effects of time-dependence of the applied strong electric field including the interplay between the perturbative multi-photon pair production and non-peturbative Schwinger mechanism, and the dynamically assisted Schwinger mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا