Do you want to publish a course? Click here

XMM-Newton and INTEGRAL analysis of the Supergiant Fast X-ray Transient IGR J17354-3255

116   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354$-$3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial pointing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across $sim66%$ of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.



rate research

Read More

308 - L. Ducci 2013
We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our observations, which cover 11 days for a total on-source exposure of about 24 ks, span 1.2 orbital periods (P_orb=8.4474 d) and are the first sensitive monitoring of this source in the soft X-rays. These new data allow us to exploit the timing variability properties of the sources in the field to unambiguously identify the soft X-ray counterpart of IGR J17354-3255. The soft X-ray light curve shows a moderate orbital modulation and a dip. We investigated the nature of the dip by comparing the X-ray light curve with the prediction of the Bondi-Hoyle-Lyttleton accretion theory, assuming both spherical and nonspherical symmetry of the outflow from the donor star. We found that the dip cannot be explained with the X-ray orbital modulation. We propose that an eclipse or the onset of a gated mechanism is the most likely explanation for the observed light curve.
57 - V. Sguera , A. Tiengo , L. Sidoli 2020
We report results from the analysis of XMM-Newton and INTEGRAL data of IGR J16479-4514. The unpublished XMM-Newton observation, performed in 2012, occurred during the source eclipse. No point-like X-ray emission was detected from the source, conversely extended X-ray emission was clearly detected up to a size distance compatible with a dust scattering halo produced by the source X-ray emission before being eclipsed by its companion donor star. The diffuse emission of the dust-scattering halo could be observed without any contamination from the central point X-ray source, compared to a previous XMM-Newton observation published in 2008. Our comprehensive analysis of the 2012 unpublished spectrum of the diffuse emission as well as of the 2008 re-analysed spectra extracted from three adjacent time intervals and different extraction regions (optimized for point-like and extended emission) allowed us to clearly disentangle the scattering halo spectrum from the residual point-like emission during the 2008 eclipse. Moreover, the point-like emission detected in 2008 could be separated into two components attributed to the direct emission from the source and to scattering in the stellar wind, respectively. From archival unpublished INTEGRAL data, we identified a very strong (3$times$10$^{-8}$ erg cm$^{-2}$ s$^{-1}$) and fast (25 minutes duration) flare which was classified as giant hard X-ray flare since the measured peak-luminosity is 7$times$10$^{37}$ erg s$^{-1}$. Giant X-ray flares from SFXTs are very rare, to date only one has been reported from a different source. We propose a physical scenario to explain the origin in the case of IGR J16479-4514.
244 - L. Ducci 2013
IGR J18483-0311 is a supergiant fast X-ray transient whose compact object is located in a wide (18.5 d) and eccentric (e~0.4) orbit, which shows sporadic outbursts that reach X-ray luminosities of ~1e36 erg/s. We investigated the timing properties of IGR J18483-0311 and studied the spectra during bright outbursts by fitting physical models based on thermal and bulk Comptonization processes for accreting compact objects. We analysed archival INTEGRAL data collected in the period 2003-2010, focusing on the observations with IGR J18483-0311 in outburst. We searched for pulsations in the INTEGRAL light curves of each outburst. We took advantage of the broadband observing capability of INTEGRAL for the spectral analysis. We observed 15 outbursts, seven of which we report here for the first time. This data analysis almost doubles the statistics of flares of this binary system detected by INTEGRAL. A refined timing analysis did not reveal a significant periodicity in the INTEGRAL observation where a ~21s pulsation was previously detected. Neither did we find evidence for pulsations in the X-ray light curve of an archival XMM-Newton observation of IGR J18483-0311. In the light of these results the nature of the compact object in IGR J18483-0311 is unclear. The broadband X-ray spectrum of IGR J18483-0311 in outburst is well fitted by a thermal and bulk Comptonization model of blackbody seed photons by the infalling material in the accretion column of a neutron star. We also obtained a new measurement of the orbital period using the Swift/BAT light curve.
83 - C. Ferrigno , E. Bozzo , A. Sanna 2019
IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. We report in this paper the analysis and results obtained from all these X-ray data. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5-80 keV energy range, and the reported association with a highly reddened OB supergiant at ~10 kpc, we conclude that IGR J17503-2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed a broad feature in addition to the typical power-law with exponential roll-over at high energy. This can be modeled either in emission or as a cyclotron scattering feature in absorption. If confirmed by future observations, this feature would indicate that IGR J17503-2636 hosts a strongly magnetized neutron star with B~2e12 G.
IGR J18483-0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here we present the results of XMM-Newton, Swift, and Chandra observations of IGRJ18483-0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483-0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGRJ18483-0311 the measured spin-period derivative of -(1.3+-0.3)x10^(-9) s/s likely results from light travel time effects in the binary. We compare the most recent observational results of IGRJ18483-0311 and SAXJ1818.6-1703, the two supergiant fast X-ray transients for which a similar orbital period has been measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا