Phase Collaborative Network for Two-Phase Medical Image Segmentation


Abstract in English

In real-world practice, medical images acquired in different phases possess complementary information, {em e.g.}, radiologists often refer to both arterial and venous scans in order to make the diagnosis. However, in medical image analysis, fusing prediction from two phases is often difficult, because (i) there is a domain gap between two phases, and (ii) the semantic labels are not pixel-wise corresponded even for images scanned from the same patient. This paper studies organ segmentation in two-phase CT scans. We propose Phase Collaborative Network (PCN), an end-to-end framework that contains both generative and discriminative modules. PCN can be mathematically explained to formulate phase-to-phase and data-to-label relations jointly. Experiments are performed on a two-phase CT dataset, on which PCN outperforms the baselines working with one-phase data by a large margin, and we empirically verify that the gain comes from inter-phase collaboration. Besides, PCN transfers well to two public single-phase datasets, demonstrating its potential applications.

Download