Do you want to publish a course? Click here

Variational Selection of Features for Molecular Kinetics

86   0   0.0 ( 0 )
 Added by Brooke Husic
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The modeling of atomistic biomolecular simulations using kinetic models such as Markov state models (MSMs) has had many notable algorithmic advances in recent years. The variational principle has opened the door for a nearly fully automated toolkit for selecting models that predict the long-time kinetics from molecular dynamics simulations. However, one yet-unoptimized step of the pipeline involves choosing the features, or collective variables, from which the model should be constructed. In order to build intuitive models, these collective variables are often sought to be interpretable and familiar features, such as torsional angles or contact distances in a protein structure. However, previous approaches for evaluating the chosen features rely on constructing a full MSM, which in turn requires additional hyperparameters to be chosen, and hence leads to a computationally expensive framework. Here, we present a method to optimize the feature choice directly, without requiring the construction of the final kinetic model. We demonstrate our rigorous preprocessing algorithm on a canonical set of twelve fast-folding protein simulations, and show that our procedure leads to more efficient model selection.



rate research

Read More

We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics (MD) simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a thousandfold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-H{u}ckel (DH, or `implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level, as well as by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD, acceleration of unbinding by free ligands in solution) explicit ion simulations lead to unbinding at lower free ligand concentrations. Our simulations predict a variety of FD regimes as a function of free ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where non-electrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.
Coarse-grained models can be of great help to address the problem of structure prediction in nucleic acids. On one hand they can make the prediction more efficient, while on the other hand, they can also help to identify the essential degrees of freedom and interactions for the description of a number of structures. With the aim to provide an all-atom representation in an explicit solvent to the predictions of our SPlit and conQueR (SPQR) coarse-grained model of RNA, we recently introduced a backmapping procedure which enforces the predicted structure into an atomistic one by means of steered Molecular Dynamics. These simulations minimize the ERMSD, a particular metric which deals exclusively with the relative arrangement of nucleobases, between the atomistic representation and the target structure. In this paper, we explore the effects of this approach on the resulting interaction networks and backbone conformations by applying it on a set of fragments using as a target their native structure. We find that the geometry of the target structures can be reliably recovered, with limitations in the regions with unpaired bases such as bulges. In addition, we observe that the folding pathway can also change depending on the parameters used in the definition of the ERMSD and the use of other metrics such as the RMSD.
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter- strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchangecorrelation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.
Computational drug discovery provides an efficient tool helping large scale lead molecules screening. One of the major tasks of lead discovery is identifying molecules with promising binding affinities towards a target, a protein in general. The accuracies of current scoring functions which are used to predict the binding affinity are not satisfactory enough. Thus, machine learning (ML) or deep learning (DL) based methods have been developed recently to improve the scoring functions. In this study, a deep convolutional neural network (CNN) model (called OnionNet) is introduced and the features are based on rotation-free element-pair specific contacts between ligands and protein atoms, and the contacts were further grouped in different distance ranges to cover both the local and non-local interaction information between the ligand and the protein. The prediction power of the model is evaluated and compared with other scoring functions using the comparative assessment of scoring functions (CASF-2013) benchmark and the v2016 core set of PDBbind database. When compared to a previous CNN-based scoring function, our model shows improvements of 0.08 and 0.16 in the correlations (R) and standard deviations (SD) of regression, respectively, between the predicted binding affinities and the experimental measured binding affinities. The robustness of the model is further explored by predicting the binding affinities of the complexes generated from docking simulations instead of experimentally determined PDB structures.
Free energy landscapes decisively determine the progress of enzymatically catalyzed reactions[1]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [2-4] because both can be determined from the same set of X-ray data. We demonstrate here how barriers of activation can be determined solely from five-dimensional crystallography [5]. Directly linking molecular structures with barriers of activation between them allows for gaining insight into the structural nature of the barrier. We analyze comprehensive time series of crystal-lographic data at 14 different temperature settings and determine entropy and enthalpy contributions to the barriers of activation. 100 years after the discovery of X-ray scattering, we advance X-ray structure determination to a new frontier, the determination of energy landscapes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا