No Arabic abstract
The behaviour of the large-scale dipolar field, during a stars magnetic cycle, can provide valuable insight into the stellar dynamo and associated magnetic field manifestations such as stellar winds. We investigate the temporal evolution of the dipolar field of the K dwarf 61 Cyg A using spectropolarimetric observations covering nearly one magnetic cycle equivalent to two chromospheric activity cycles. The large-scale magnetic field geometry is reconstructed using Zeeman Doppler imaging, a tomographic inversion technique. Additionally, the chromospheric activity is also monitored. The observations provide an unprecedented sampling of the large-scale field over a single magnetic cycle of a star other than the Sun. Our results show that 61 Cyg A has a dominant dipolar geometry except at chromospheric activity maximum. The dipole axis migrates from the southern to the northern hemisphere during the magnetic cycle. It is located at higher latitudes at chromospheric activity cycle minimum and at middle latitudes during cycle maximum. The dipole is strongest at activity cycle minimum and much weaker at activity cycle maximum. The behaviour of the large-scale dipolar field during the magnetic cycle resembles the solar magnetic cycle. Our results are further confirmation that 61 Cyg A indeed has a large-scale magnetic geometry that is comparable to the Suns, despite being a slightly older and cooler K dwarf.
A sample of 19 solar-type stars, probing masses between 0.6 and 1.4 solar mass and rotation periods between 3.4 and 43 days, was regularly observed using the NARVAL spectropolarimeter at Telescope Bernard Lyot (Pic du Midi, France) between 2007 and 2011. The Zeeman-Doppler Imaging technique is employed to reconstruct the large-scale photospheric magnetic field structure of the targets and investigate its long-term temporal evolution. We present here the first results of this project with the observation of short magnetic cycles in several stars, showing up a succession of polarity reversals over the timespan of our monitoring. Preliminary trends suggest that short cycles are more frequent for stellar periods below a dozen days and for stellar masses above about one solar mass. The cycles lengths unveiled by the direct tracking of polarity switches are significantly shorter than those derived from previous studies based on chromospheric activity monitoring, suggesting the coexistence of several magnetic timescales in a same star.
Aims. We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star xi Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods. We obtained seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6,100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Halpha lines. Results. During the highest observed activity states, in 2007 and 2011, the large-scale field of xi Boo A is almost completely axisymmetric and is dominated by its toroidal component. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Halpha emission and the width of magnetically sensitive lines. When measurable, the differential rotation reveals a strong latitudinal shear in excess of 0.2 rad/d.
Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.
Stellar members of binary systems are formed from the same material, therefore they should be chemically identical. However, recent high-precision studies have unveiled chemical differences between the two members of binary pairs composed by Sun-like stars. The very existence of these chemically inhomogeneous binaries represents one of the most contradictory examples in stellar astrophysics and source of tension between theory and observations. It is still unclear whether the abundance variations are the result of chemical inhomogeneities in the protostellar gas clouds or instead if they are due to planet engulfment events occurred after the stellar formation. While the former scenario would undermine the belief that the chemical makeup of a star provides the fossil information of the environment where it formed, a key assumption made by several studies of our Galaxy, the second scenario would shed light on the possible evolutionary paths of planetary systems. Here, we perform a statistical study on 107 binary systems composed by Sun-like stars to provide - for the first time - unambiguous evidence in favour of the planet engulfment scenario. We also establish that planet engulfment events occur in stars similar to our own Sun with a probability ranging between 20 and 35$%$. This implies that a significant fraction of planetary systems undergo very dynamical evolutionary paths that can critically modify their architectures, unlike our Solar System which has preserved its planets on nearly circular orbits. This study also opens to the possibility of using chemical abundances of stars to identify which ones are the most likely to host analogues of the calm Solar System.
Magnetic fields play an important role at all stages of stellar evolution. In Sun-like stars, they are generated in the outer convective layers. Studying the large-scale magnetic fields of these stars enlightens our understanding of the field properties and gives us observational constraints for the field generation models. In this review, I summarise the current observational picture of the large-scale magnetic fields of Sun-like stars, in particular solar-twins and planet-host stars. I discuss the observations of large-scale magnetic cycles, and compare these cycles to the solar cycle.