Do you want to publish a course? Click here

Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials

81   0   0.0 ( 0 )
 Added by Shijun Liang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nano-structuring is an extremely promising path to high performance thermoelectrics. Favorable improvements in thermal conductivity are attainable in many material systems, and theoretical work points to large improvements in electronic properties. However, realization of the electronic benefits in practical materials has been elusive experimentally. A key challenge is that experimental identification of the quantum confinement length, below which the thermoelectric power factor is significantly enhanced, remains elusive due to lack of simultaneous control of size and carrier density. Here we investigate gate tunable and temperature-dependent thermoelectric transport in $gamma$ phase indium selenide ($gamma$ InSe, n type semiconductor) samples with thickness varying from 7 to 29 nm. This allows us to properly map out dimension and doping space. Combining theoretical and experimental studies, we reveal that the sharper pre-edge of the conduction-band density of states arising from quantum confinement gives rise to an enhancement of the Seebeck coefficient and the power factor in the thinner InSe samples. Most importantly, we experimentally identify the role of the competition between quantum confinement length and thermal de Broglie wavelength in the enhancement of power factor. Our results provide an important and general experimental guideline for optimizing the power factor and improving the thermoelectric performance of two-dimensional layered semiconductors.



rate research

Read More

Symmetry breaking in two-dimensional layered materials plays a significant role in their macroscopic electrical, optical, magnetic and topological properties, including but not limited to spin-polarization effects, valley-contrasting physics, nonlinear Hall effects, nematic order, ferroelectricity, Bose-Einstein condensation and unconventional superconductivity. Engineering symmetry breaking of two-dimensional layered materials not only offers extraordinary opportunities to tune their physical properties, but also provides unprecedented possibilities to introduce completely new physics and technological innovations in electronics, photonics and optoelectronics. Indeed, over the past 15 years, a wide variety of physical, structural and chemical approaches have been developed to engineer symmetry breaking of two-dimensional layered materials. In this Review, we focus on the recent progresses on engineering the breaking of inversion, rotational, time reversal and spontaneous gauge symmetries in two-dimensional layered materials, and illustrate our perspectives on how these may lead to potential new physics and applications.
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effect in practice. Here we point out that there is an upper limit to the thermoelectric power factor of non-ballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasi-ballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit predicts that a competitive power factor, on the order of mW/m-K^2, can be achieved by a single 1D electronic channel in state-of-the-art semiconductor nanowires with small cross-section and high crystal quality.
In this work the above-band gap absorption spectrum in two-dimensional Dirac materials is calculated with account for the interaction between the photocarriers. Both the screened Rytova-Keldysh and pure Coulomb attraction potentials between the electron and hole are used in the study. We find that, in the materials under consideration, the interaction enhances the absorbance in the narrow interband edge region, in a sharp contrast to the band model with the parabolic free-carrier energy dispersion. We develop an approximation of the weak interaction which allows us to reproduce the main features of the exactly calculated Sommerfeld factor. We show a substantial reduction of this factor at higher frequencies due to the single-particle energy renormalization.
Layered materials have uncommonly anisotropic thermal properties due to their strong in-plane covalent bonds and weak out-of-plane van der Waals interactions. Here we examine heat flow in graphene (graphite), h-BN, MoS2, and WS2 monolayers and bulk films, from diffusive to ballistic limits. We determine the ballistic thermal conductance limit (Gball) both in-plane and out-of-plane, based on full phonon dispersions from first-principles calculations. An overall phonon mean free path ({lambda}) is expressed in terms of Gball and the diffusive thermal conductivity, consistent with kinetic theory if proper averaging of phonon group velocity is used. We obtain a size-dependent thermal conductivity k(L) in agreement with available experiments, and find that k(L) only converges to >90% of the diffusive thermal conductivity for sample sizes L > 16{lambda}, which ranges from ~140 nm for MoS2 cross-plane to ~10 um for suspended graphene in-plane. These results provide a deeper understanding of microscopic thermal transport, revealing that device scales below which thermal size effects should be taken into account are generally larger than previously thought.
The growing library of two-dimensional layered materials is providing researchers with a wealth of opportunity to explore and tune physical phenomena at the nanoscale. Here, we review the experimental and theoretical state-of-art concerning the electron spin dynamics in graphene, silicene, phosphorene, transition metal dichalcogenides, covalent heterostructures of organic molecules and topological materials. The spin transport, chemical and defect induced magnetic moments, and the effect of spin-orbit coupling and spin relaxation, are also discussed in relation to the field of spintronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا