Sketch has been employed as an effective communicative tool to express the abstract and intuitive meanings of object. Recognizing the free-hand sketch drawing is extremely useful in many real-world applications. While content-based sketch recognition has been studied for several decades, the instance-level Sketch-Based Image Retrieval (SBIR) tasks have attracted significant research attention recently. The existing datasets such as QMUL-Chair and QMUL-Shoe, focus on the retrieval tasks of chairs and shoes. However, there are several key limitations in previous instance-level SBIR works. The state-of-the-art works have to heavily rely on the pre-training process, quality of edge maps, multi-cropping testing strategy, and augmenting sketch images. To efficiently solve the instance-level SBIR, we propose a new Deep Triplet Classification Siamese Network (DeepTCNet) which employs DenseNet-169 as the basic feature extractor and is optimized by the triplet loss and classification loss. Critically, our proposed DeepTCNet can break the limitations existed in previous works. The extensive experiments on five benchmark sketch datasets validate the effectiveness of the proposed model. Additionally, to study the tasks of sketch-based hairstyle retrieval, this paper contributes a new instance-level photo-sketch dataset - Hairstyle Photo-Sketch dataset, which is composed of 3600 sketches and photos, and 2400 sketch-photo pairs.