Do you want to publish a course? Click here

Statistical Robust Chinese Remainder Theorem for Multiple Numbers: Wrapped Gaussian Mixture Model

315   0   0.0 ( 0 )
 Added by Hanshen Xiao
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Generalized Chinese Remainder Theorem (CRT) has been shown to be a powerful approach to solve the ambiguity resolution problem. However, with its close relationship to number theory, study in this area is mainly from a coding theory perspective under deterministic conditions. Nevertheless, it can be proved that even with the best deterministic condition known, the probability of success in robust reconstruction degrades exponentially as the number of estimand increases. In this paper, we present the first rigorous analysis on the underlying statistical model of CRT-based multiple parameter estimation, where a generalized Gaussian mixture with background knowledge on samplings is proposed. To address the problem, two novel approaches are introduced. One is to directly calculate the conditional maximal a posteriori probability (MAP) estimation of residue clustering, and the other is to iteratively search for MAP of both common residues and clustering. Moreover, remainder error-correcting codes are introduced to improve the robustness further. It is shown that this statistically based scheme achieves much stronger robustness compared to state-of-the-art deterministic schemes, especially in low and median Signal Noise Ratio (SNR) scenarios.



rate research

Read More

Generalized Chinese Remainder Theorem (CRT) is a well-known approach to solve ambiguity resolution related problems. In this paper, we study the robust CRT reconstruction for multiple numbers from a view of statistics. To the best of our knowledge, it is the first rigorous analysis on the underlying statistical model of CRT-based multiple parameter estimation. To address the problem, two novel approaches are established. One is to directly calculate a conditional maximum a posteriori probability (MAP) estimation of the residue clustering, and the other is based on a generalized wrapped Gaussian mixture model to iteratively search for MAP of both estimands and clustering. Residue error correcting codes are introduced to improve the robustness further. Experimental results show that the statistical schemes achieve much stronger robustness compared to state-of-the-art deterministic schemes, especially in heavy-noise scenarios.
Chinese Remainder Theorem (CRT) is a powerful approach to solve ambiguity resolution related problems such as undersampling frequency estimation and phase unwrapping which are widely applied in localization. Recently, the deterministic robust CRT for multiple numbers (RCRTMN) was proposed, which can reconstruct multiple integers with unknown relationship of residue correspondence via generalized CRT and achieves robustness to bounded errors simultaneously. Naturally, RCRTMN sheds light on CRT-based estimation for multiple objectives. In this paper, two open problems arising that how to introduce statistical methods into RCRTMN and deal with arbitrary errors introduced in residues are solved. We propose the extended version of RCRTMN assisted with Maximum Likelihood Estimation (MLE), which can tolerate unrestricted errors and bring considerable improvement in robustness.
Chinese Remainder Theorem (CRT) has been widely studied with its applications in frequency estimation, phase unwrapping, coding theory and distributed data storage. Since traditional CRT is greatly sensitive to the errors in residues due to noises, the problem of robustly reconstructing integers via the erroneous residues has been intensively studied in the literature. In order to robustly reconstruct integers, there are two kinds of traditional methods: the one is to introduce common divisors in the moduli and the other is to directly decrease the dynamic range. In this paper, we take further insight into the geometry property of the linear space associated with CRT. Echoing both ways to introduce redundancy, we propose a pseudo metric to analyze the trade-off between the error bound and the dynamic range for robust CRT in general. Furthermore, we present the first robust CRT for multiple numbers to solve the problem of the CRT-based undersampling frequency estimation in general cases. Based on symmetric polynomials, we proved that in most cases, the problem can be solved in polynomial time efficiently. The work in this paper is towards a complete theoretical solution to the open problem over 20 years.
We consider the problem of clustering datasets in the presence of arbitrary outliers. Traditional clustering algorithms such as k-means and spectral clustering are known to perform poorly for datasets contaminated with even a small number of outliers. In this paper, we develop a provably robust spectral clustering algorithm that applies a simple rounding scheme to denoise a Gaussian kernel matrix built from the data points and uses vanilla spectral clustering to recover the cluster labels of data points. We analyze the performance of our algorithm under the assumption that the good data points are generated from a mixture of sub-gaussians (we term these inliers), while the outlier points can come from any arbitrary probability distribution. For this general class of models, we show that the misclassification error decays at an exponential rate in the signal-to-noise ratio, provided the number of outliers is a small fraction of the inlier points. Surprisingly, this derived error bound matches with the best-known bound for semidefinite programs (SDPs) under the same setting without outliers. We conduct extensive experiments on a variety of simulated and real-world datasets to demonstrate that our algorithm is less sensitive to outliers compared to other state-of-the-art algorithms proposed in the literature.
We prove the equidistribution of subsets of $(Rr/Zz)^n$ defined by fractional parts of subsets of~$(Zz/qZz)^n$ that are constructed using the Chinese Remainder Theorem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا