No Arabic abstract
In this paper we show that every non-cycle finite transitive directed graph has a Cuntz-Krieger family whose WOT-closed algebra is $B(mathcal{H})$. This is accomplished through a new construction that reduces this problem to in-degree $2$-regular graphs, which is then treated by applying the periodic Road Coloring Theorem of Beal and Perrin. As a consequence we show that finite disjoint unions of finite transitive directed graphs are exactly those finite graphs which admit self-adjoint free semigroupoid algebras.
A free semigroupoid algebra is the closure of the algebra generated by a TCK family of a graph in the weak operator topology. We obtain a structure theory for these algebras analogous to that of free semigroup algebra. We clarify the role of absolute continuity and wandering vectors. These results are applied to obtain a Lebesgue-von Neumann-Wold decomposition of TCK families, along with reflexivity, a Kaplansky density theorem and classification for free semigroupoid algebras. Several classes of examples are discussed and developed, including self-adjoint examples and a classification of atomic free semigroupoid algebras up to unitary equivalence.
Given a graph $E$, an action of a group $G$ on $E$, and a $G$-valued cocycle $phi$ on the edges of $E$, we define a C*-algebra denoted ${cal O}_{G,E}$, which is shown to be isomorphic to the tight C*-algebra associated to a certain inverse semigroup $S_{G,E}$ built naturally from the triple $(G,E,phi)$. As a tight C*-algebra, ${cal O}_{G,E}$ is also isomorphic to the full C*-algebra of a naturally occurring groupoid ${cal G}_{tight}(S_{G,E})$. We then study the relationship between properties of the action, of the groupoid and of the C*-algebra, with an emphasis on situations in which ${cal O}_{G,E}$ is a Kirchberg algebra. Our main applications are to Katsura algebras and to certain algebras constructed by Nekrashevych from self-similar groups. These two classes of C*-algebras are shown to be special cases of our ${cal O}_{G,E}$, and many of their known properties are shown to follow from our general theory.
Let $x_0$ be a self-adjoint random variable and $c_t$ be a free circular Brownian motion, freely independent from $x_0$. We use the Hamilton--Jacobi method to compute the Brown measure $rho_t$ of $x_0+c_t$. The Brown measure is absolutely continuous with a density that is emph{constant along the vertical direction} in the support of $rho_t$. The support of the Brown measure of $x_0+c_t$ is related to the subordination function of the free additive convolution of $x_0+s_t$, where $s_t$ is the free semicircular Brownian motion, freely independent from $x_0$. Furthermore, the push-forward of $rho_t$ by a natural map is the law of $x_0+s_t$. Let $u$ be a unitary random variable and $b_t$ is the free multiplicative Brownian motion freely independent from $u$, we compute the Brown measure $mu_t$ of the free multiplicative Brownian motion $ub_t$, extending the recent work by Driver--Hall--Kemp. The measure is absolutely continuous with a density of the special form [frac{1}{r^2}w_t(theta)] in polar coordinates in its support. The support of $mu_t$ is related to the subordination function of the free multiplicative convolution of $uu_t$ where $u_t$ is the free unitary Brownian motion free independent from $u$. The push-forward of $mu_t$ by a natural map is the law of $uu_t$. In the special case that $u$ is Haar unitary, the Brown measure $mu_t$ follows the emph{annulus law}. The support of the Brown measure of $ub_t$ is an annulus with inner radius $e^{-t/2}$ and outer radius $e^{t/2}$. The density in polar coordinates is given by [frac{1}{2pi t}frac{1}{r^2}] in its support.
We study the structure and compute the stable rank of C*-algebras of finite higher-rank graphs. We completely determine the stable rank of the C*-algebra when the k-graph either contains no cycle with an entrance, or is cofinal. We also determine exactly which finite, locally convex k-graphs yield unital stably finite C*-algebras. We give several examples to illustrate our results.
In this paper we consider a bootstrap class $mathfrak C$ of countable discrete groups, which is closed under countable unions and extensions by the integers, and we study actions of such groups on C*-algebras. This class includes all torsion-free abelian groups, poly-$mathbb Z$-groups, as well as other examples. Using the interplay between relative Rokhlin dimension and semi-strongly self-absorbing actions established in prior work, we obtain the following two main results for any group $Gammainmathfrak C$ and any strongly self-absorbing C*-algebra $mathcal D$: (1) There is a unique strongly outer $Gamma$-action on $mathcal D$ up to (very strong) cocycle conjugacy. (2) If $alpha: Gammacurvearrowright A$ is a strongly outer action on a separable, unital, nuclear, simple, $mathcal D$-stable C*-algebra with at most one trace, then it absorbs every $Gamma$-action on $mathcal D$ up to (very strong) cocycle conjugacy. In fact we establish more general relati