Do you want to publish a course? Click here

A Relativistic Disc Reflection Model for 1H0419-577: Multi-Epoch Spectral Analysis with XMM-Newton and NuSTAR

72   0   0.0 ( 0 )
 Added by Jiachen Jiang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed analysis of the spectral properties of the Seyfert 1 galaxy 1H0419-577, based on the archival XMM-Newton, NuSTAR and simultaneous Swift observations taken between 2002-2015. All the observations show a broad emission line feature at the iron band. We demonstrate that the broad band spectral variability at different levels can be explained by the combination of light-bending effects in the vicinity of the central black hole plus a thin warm absorber. We obtain a black hole spin of a > 0.98 by fitting the multi-epoch spectra with the relativistic disc reflection model. 1H0419-577 is accreting at 40% of its Eddington limit and its X-ray band shows the hardest powerlaw continuum in the highest flux state, which was previously more commonly seen in AGNs with a low accretion rate (e.g. $L_{rm X} /L_{rm Edd} < 10^{-2}$). The NuSTAR observation shows a cool coronal temperature of $kT=30^{+22}_{-7}$keV in the high flux state.



rate research

Read More

835 - L. Di Gesu 2014
In this paper we present the longest exposure (97 ks) XMM-Newton EPIC-pn spectrum ever obtained for the Seyfert 1.5 galaxy 1H 0419-577. With the aim of explaining the broadband emission of this source, we took advantage of the simultaneous coverage in the optical/UV that was provided in the present case by the XMM-Newton Optical Monitor and by a HST-COS observation. Archival FUSE flux measurements in the FUV were also used for the present analysis. We successfully modeled the X-ray spectrum together with the optical/UV fluxes data points using a Comptonization model. We found that a blackbody temperature of $T sim 56$ eV accounts for the optical/UV emission originating in the accretion disk. This temperature serves as input for the Comptonized components that model the X-ray continuum. Both a warm ($T_{rm wc} sim 0.7 $ keV, $tau_{rm wc} sim 7 $) and a hot corona ($T_{rm hc} sim 160 $ keV, $tau_{rm hc} sim 0.5$) intervene to upscatter the disk photons to X-ray wavelengths. With the addition of a partially covering ($C_vsim50%$) cold absorber with a variable opacity ($ {it N}_{rm H}sim [10^{19}- 10^{22}] ,rm cm^{-2}$), this model can well explain also the historical spectral variability of this source, with the present dataset presenting the lowest one (${it N}_{rm H}sim 10^{19} , rm cm^{-2} $). We discuss a scenario where the variable absorber, getting ionized in response to the variations of the X-ray continuum, becomes less opaque in the highest flux states. The lower limit for the absorber density derived in this scenario is typical for the broad line region clouds. Finally, we critically compare this scenario with all the different models (e.g. disk reflection) that have been used in the past to explain the variability of this source
181 - L. Di Gesu 2013
In this paper we analyze the X-ray, UV and optical data of the Seyfert 1.5 galaxy 1H0419-577, with the aim of detecting and studying an ionized-gas outflow. The source was observed simultaneously in the X-rays with XMM and in the UV with HST-COS. Optical data were also acquired with the XMM Optical Monitor. We detected a thin, lowly ionized warm absorber (log xi ~ 0.03, log NH ~19.9 cm^-2) in the X-ray spectrum, consistent to be produced by the same outflow already detected in the UV. Provided the gas density estimated in the UV, the outflow is consistent to be located in the host galaxy, at ~ kpc scale. Narrow emission lines were detected in the X-rays, in the UV and also in the optical spectrum. A single photoionized-gas model cannot account for all the narrow lines emission, indicating that the narrow line region is probably a stratified environment, differing in density and ionization. X-ray lines are unambiguously produced in a more highly ionized gas phase than the one emitting the UV lines. The analysis suggests also that the X-ray emitter may be just a deeper portion of the same gas layer producing the UV lines. Optical lines are probably produced in another, disconnected gas system. The different ionization condition, and the ~ pc scale location suggested by the line width for the narrow lines emitters, argue against a connection between the warm absorber and the narrow line region in this source.
We disentangle X-ray disk reflection from complex line-of-sight absorption in the nearby Seyfert NGC 4151, using a suite of Suzaku, NuSTAR, and XMM-Newton observations. Extending upon earlier published work, we pursue a physically motivated model using the latest angle-resolved version of the lamp-post geometry reflection model relxillCp_lp together with a Comptonization continuum. We use the long-look simultaneous Suzaku/NuSTAR observation to develop a baseline model wherein we model reflected emission as a combination of lamp-post components at the heights of 1.2 and 15.0 gravitational radii. We argue for a vertically extended corona as opposed to two compact and distinct primary sources. We find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber ($log xi = 2.8$), and a highly-ionized ultra-fast outflow, which have all been reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability between 1 keV and 6 keV can be accounted for by changes in the column density of both neutral absorbers, which appear to be degenerate and inversely correlated with the variable hard continuum component flux. We track variability in absorption on both short (2 d) and long ($sim$1 yr) timescales; the observed evolution is either consistent with changes in the absorber structure (clumpy absorber at distances ranging from the broad line region (BLR) to the inner torus or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas that may act as a warm mirror for the nuclear radiation.
We present results from a deep, coordinated $XMM$-$Newton$+$NuSTAR$ observation of the Seyfert 2 galaxy IRAS 00521-7054. The $NuSTAR$ data provide the first detection of this source in high-energy X-rays ($E > 10$ keV), and the broadband data show this to be a highly complex source which exhibits relativistic reflection from the inner accretion disc, further reprocessing by more distant material, neutral absorption, and evidence for ionised absorption in an extreme, ultrafast outflow ($v_{rm{out}} sim 0.4c$). Based on lamppost disc reflection models, we find evidence that the central supermassive black hole is rapidly rotating ($a > 0.77$), consistent with previous estimates from the profile of the relativistic iron line, and that the accretion disc is viewed at a fairly high inclination ($i sim 59^{circ}$). Based on extensive simulations, we find the ultrafast outflow is detected at $sim$4$sigma$ significance (or greater). We also estimate that the extreme outflow should be sufficient to power galaxy-scale feedback, and may even dominate the energetics of the total output from the system.
We analyse all available observations of GX 339--4 by XMM-Newton in the hard spectral state. We jointly fit the spectral data by Comptonization and the currently best reflection code, relxill. We consider in detail a contribution from a standard blackbody accretion disc, testing whether its inner radius can be set equal to that of the reflector. However, this leads to an unphysical behaviour of the disc truncation radius, implying the soft X-ray component is not a standard blackbody disc. This appears to be due to irradiation by the hard X-rays, which strongly dominate the total emission. We consider a large array of models, testing, e.g., the effects of the chosen energy range, of adding unblurred reflection, and assuming a lamppost geometry. We find the effects of relativistic broadening to be relatively weak in all cases. In the coronal models, we find the inner radius to be large. In the lamppost model, the inner radius is unconstrained, but when fixed to the innermost stable orbit, the height of the source is large, which also implies a weak relativistic broadening. In the former models, the inner radius correlates with the X-ray hardness ratio, which is consistent with the presence of a truncated disc turning into a complete disc in the soft state. We also find the degree of the disc ionization to anti-correlate with the hardness, leading to strong spectral broadening due to scattering of reflected photons in the reflector in the softest studied states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا