We present a well-posed constraint-preserving scheme for evolving first-order metric perturbations on an arbitrary background with arbitrary source. We use this scheme to evolve the leading-order metric perturbation in order-reduced dynamical Chern-Simons gravity (dCS) on a Kerr background. In particular we test the stability of stationary dCS data on a Kerr background with stationary first-order dCS scalar field source. We find that the leading-order metric perturbation numerically exhibits linear growth, but that the level of this growth converges to zero with numerical resolution. This analysis shows that spinning black holes in dCS gravity are numerically stable to leading-order perturbations in the metric.
In this paper, we consider dynamical Chern-Simons gravity with the identification of the scalar field coupled though the Pontryagin density with the axion dark matter, and we discuss the effects of the parametric resonance on gravitational waves (GWs). When we consider GWs in a coherently oscillating axion cloud, we confirm that significant resonant amplification of GWs occurs in a narrow frequency band, and the amplification is restricted to the late epoch after the passage of the incident waves. We also identify the condition that an axion cloud spontaneously emits GWs. Once we take into account the randomness of the spatial phase distribution of the axion oscillations, we find that the amplification is suppressed compared with the coherent case, but significant amplification of GWs can still occur. We also examine whether or not the amplification of GWs is possible in the present universe, taking into account the history of the universe. We find that resonant amplification is difficult to be tested from GW observations in the standard scenario of the axion DM model, in which the axion is the dominant component of DM. However, there is some parameter window in which the resonant amplification of GWs might be observed, if the axion is subdominant component of DM, and the axion cloud formation is delayed until the Hubble rate becomes much smaller than the axion mass.
We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-reduced dynamical Chern-Simons gravity. This is a precursor to producing beyond-general-relativity waveforms for inspiraling binary black hole systems that are useful for gravitational wave detection. Head-on collisions are interesting in their own right, however, as they cleanly probe the quasi-normal mode spectrum of the final black hole. We thus compute the leading-order dynamical Chern-Simons modifications to the complex frequencies of the post-merger gravitational radiation. We consider equal-mass systems, with equal spins oriented along the axis of collision, resulting in remnant black holes with spin. We find modifications to the complex frequencies of the quasi-normal mode spectrum that behave as a power law with the spin of the remnant, and that are not degenerate with the frequencies associated with a Kerr black hole of any mass and spin. We discuss these results in the context of testing general relativity with gravitational wave observations.
Spinning black holes in dynamical Einstein-Chern-Simons gravity are constructed by directly solving the field equations, without resorting to any perturbative expansion. This model is obtained by adding to the Einstein-Hilbert action a particular higher-curvature correction: the Pontryagin density, linearly coupled to a scalar field. The spinning black holes are stationary, axi-symmetric, asymptotically flat generalisations of the Kerr solution of Einsteins gravity, but they possess a non-trivial (odd-parity) scalar field. They are regular on and outside the horizon and satisfy a generalized Smarr relation. We discuss the deviations from Kerr at the level of the spin and mass distribution, the horizon angular velocity, the ergo-region and some basic properties of geodesic motion. For sufficiently small values of the Chern-Simons coupling our results match those previously obtained using a perturbative approach.
Dynamical Chern-Simons gravity has an interesting feature that the parity violating term exists, and the coupling is determined by a dynamical scalar field. When the spacetime has spherical symmetry, the parity violating term vanishes, and then the metric of the Schwarzschild spacetime with vanishing scalar field is an exact solution of dynamical Chern-Simons gravity. The effect of the Chern-Simons coupling appears in the study of perturbation around the Schwarzschild spacetime. Due to the parity violating term, the odd parity metric perturbation and the perturbed scalar field are coupled, and the perturbed field equations take the form of the coupled system of the Schrodinger equations. We prove linear mode stability for a generic massive scalar.
The gravitational memory effects of Chern-Simons modified gravity are considered in the asymptotically flat spacetime. If the Chern-Simons scalar does not directly couple with the ordinary matter fields, there are also displacement, spin and center-of-mass memory effects as in general relativity. This is because the term of the action that violates the parity invariance is linear in the scalar field but quadratic in the curvature tensor. This results in the parity violation occuring at the higher orders in the inverse luminosity radius. The scalar field does not induce any new memory effects that can be detected by interferometers or pulsar timing arrays. The asymptotic symmetry is group is also the extended Bondi-Metzner-Sachs group. The constraints on the memory effects excited by the tensor modes are obtained.