Do you want to publish a course? Click here

Quench Dynamics and Orthogonality Catastrophe of Bose Polarons

379   0   0.0 ( 0 )
 Added by Simeon Mistakidis
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We monitor the correlated quench induced dynamical dressing of a spinor impurity repulsively interacting with a Bose-Einstein condensate. Inspecting the temporal evolution of the structure factor three distinct dynamical regions arise upon increasing the interspecies interaction. These regions are found to be related to the segregated nature of the impurity and to the ohmic character of the bath. It is shown that the impurity dynamics can be described by an effective potential that deforms from a harmonic to a double-well one when crossing the miscibility-immiscibility threshold. In particular, for miscible components the polaron formation is imprinted on the spectral response of the system. We further illustrate that for increasing interaction an orthogonality catastrophe occurs and the polaron picture breaks down. Then a dissipative motion of the impurity takes place leading to a transfer of energy to its environment. This process signals the presence of entanglement in the many-body system.



rate research

Read More

We propose and investigate a pump-probe spectroscopy scheme to unveil the time-resolved dynamics of fermionic or bosonic impurities immersed in a harmonically trapped Bose-Einstein condensate. In this scheme a pump pulse initially transfers the impurities from a noninteracting to a resonantly interacting spin-state and, after a finite time in which the system evolves freely, the probe pulse reverses this transition. This directly allows to monitor the nonequilibrium dynamics of the impurities as the dynamical formation of coherent attractive or repulsive Bose polarons and signatures of their induced-interactions are imprinted in the probe spectra. We show that for interspecies repulsions exceeding the intraspecies ones a temporal orthogonality catastrophe occurs, followed by enhanced energy redistribution processes, independently of the impuritys flavor. This phenomenon takes place over the characteristic trap timescales. For much longer timescales a steady state is reached characterized by substantial losses of coherence of the impurities. This steady state is related to eigenstate thermalization and it is demonstrated to be independent of the systems characteristics.
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a $p$-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, $n$. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.
We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution when the interaction between the two distinct species is suddenly switched on (quenched). We examine the behavior of the densities, the entanglement, the Loschmidt echo and the spectral function for a large range of inter-species interactions and find that even in such small systems evidence of Andersons orthogonality catastrophe can be witnessed.
A remarkable feature of quantum many-body systems is the orthogonality catastrophe which describes their extensively growing sensitivity to local perturbations and plays an important role in condensed matter physics. Here we show that the dynamics of the orthogonality catastrophe can be fully characterized by the quantum speed limit and, more specifically, that any quenched quantum many-body system whose variance in ground state energy scales with the system size exhibits the orthogonality catastrophe. Our rigorous findings are demonstrated by two paradigmatic classes of many-body systems -- the trapped Fermi gas and the long-range interacting Lipkin-Meshkov-Glick spin model.
Understanding the rich behavior that emerges from systems of interacting quantum particles, such as electrons in materials, nucleons in nuclei or neutron stars, the quark-gluon plasma, and superfluid liquid helium, requires investigation of systems that are clean, accessible, and have tunable parameters. Ultracold quantum gases offer tremendous promise for this application largely due to an unprecedented control over interactions. Specifically, $a$, the two-body scattering length that characterizes the interaction strength, can be tuned to any value. This offers prospects for experimental access to regimes where the behavior is not well understood because interactions are strong, atom-atom correlations are important, mean-field theory is inadequate, and equilibrium may not be reached or perhaps does not even exist. Of particular interest is the unitary gas, where $a$ is infinite, and where many aspects of the system are universal in that they depend only on the particle density and quantum statistics. While the unitary Fermi gas has been the subject of intense experimental and theoretical investigation, the degenerate unitary Bose gas has generally been deemed experimentally inaccessible because of three-body loss rates that increase dramatically with increasing $a$. Here, we investigate dynamics of a unitary Bose gas for timescales that are short compared to the loss. We find that the momentum distribution of the unitary Bose gas evolves on timescales fast compared to losses, and that both the timescale for this evolution and the limiting shape of the momentum distribution are consistent with universal scaling with density. This work demonstrates that a unitary Bose gas can be created and probed dynamically, and thus opens the door for further exploration of this novel strongly interacting quantum liquid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا