Do you want to publish a course? Click here

All two-loop MHV remainder functions in multi-Regge kinematics

59   0   0.0 ( 0 )
 Added by Claude Duhr
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a method to extract the symbol of the coefficient of $(2pi i)^2$ of MHV remainder functions in planar N=4 Super Yang-Mills in multi-Regge kinematics region directly from the symbol in full kinematics. At two loops this symbol can be uplifted to the full function in a unique way, without any beyond-the-symbol ambiguities. We can therefore determine all two-loop MHV amplitudes at function level in all kinematic regions with different energy signs in multi-Regge kinematics. We analyse our results and we observe that they are consistent with the hypothesis of a contribution from the exchange of a three-Reggeon composite state starting from two loops and eight points in certain kinematic regions.



rate research

Read More

We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar N=4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polylogarithms. We also employ a more restricted class of hexagon functions which have the correct branch cuts and certain other restrictions on their symbols. We classify all the hexagon functions through transcendental weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a set of first-order differential equations. The three-loop remainder function is a particular weight-six hexagon function, whose symbol was determined previously. The differential equations can be integrated numerically for generic values of the cross ratios, or analytically in certain kinematics limits, including the near-collinear and multi-Regge limits. These limits allow us to impose constraints from the operator product expansion and multi-Regge factorization directly at the function level, and thereby to fix uniquely a set of Riemann-zeta-valued constants that could not be fixed at the level of the symbol. The near-collinear limits agree precisely with recent predictions by Basso, Sever and Vieira based on integrability. The multi-Regge limits agree with the factorization formula of Fadin and Lipatov, and determine three constants entering the impact factor at this order. We plot the three-loop remainder function for various slices of the Euclidean region of positive cross ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of the three-loop to the two-loop remainder function is relatively constant, and close to -7.
We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the $2to 4$ Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.
We give a closed-form, prescriptive representation of all-multiplicity two-loop MHV amplitude integrands in fully-color-dressed (non-planar) maximally supersymmetric Yang-Mills theory.
Using four-dimensional unitarity and MHV-rules we calculate the one-loop MHV amplitudes with all external particles in the adjoint representation for N=2 supersymmetric QCD with N_f fundamental flavours. We start by considering such amplitudes in the superconformal N=4 gauge theory where the N=4 supersymmetric Ward identities (SWI) guarantee that all MHV amplitudes for all types of external particles are given by the corresponding tree-level result times a universal helicity- and particle-type-independent contribution. In N=2 SQCD the MHV amplitudes differ from those for N=4 for general values of N_f and N_c. However, for N_f=2N_c where the N=2 SQCD is conformal, the N=2 MHV amplitudes (with all external particles in the adjoint representation) are identical to the N=4results. This factorisation at one-loop motivates us to pose a question if there may be a BDS-like factorisation for these amplitudes which also holds at higher orders of perturbation theory in superconformal N=2 theory.
We reproduce the two-loop seven-point remainder function in planar, maximally supersymmetric Yang-Mills theory by direct integration of conformally-regulated chiral integrands. The remainder function is obtained as part of the two-loop logarithm of the MHV amplitude, the regularized form of which we compute directly in this scheme. We compare the scheme-dependent anomalous dimensions and related quantities in the conformal regulator with those found for the Higgs regulator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا