Do you want to publish a course? Click here

An Unknown Input Multi-Observer Approach for Estimation, Attack Isolation, and Control of LTI Systems under Actuator Attacks

86   0   0.0 ( 0 )
 Added by Tianci Yang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We address the problem of state estimation, attack isolation, and control for discrete-time Linear Time Invariant (LTI) systems under (potentially unbounded) actuator false data injection attacks. Using a bank of Unknown Input Observers (UIOs), each observer leading to an exponentially stable estimation error in the attack-free case, we propose an estimator that provides exponential estimates of the system state and the attack signals when a sufficiently small number of actuators are attacked. We use these estimates to control the system and isolate actuator attacks. Simulations results are presented to illustrate the performance of the results.



rate research

Read More

We address the problem of state estimation, attack isolation, and control of discrete-time linear time-invariant systems under (potentially unbounded) actuator and sensor false data injection attacks. Using a bank of unknown input observers, each observer leading to an exponentially stable estimation error (in the attack-free case), we propose an observer-based estimator that provides exponential estimates of the system state in spite of actuator and sensor attacks. Exploiting sensor and actuator redundancy, the estimation scheme is guaranteed to work if a sufficiently small subset of sensors and actuators are under attack. Using the proposed estimator, we provide tools for reconstructing and isolating actuator and sensor attacks; and a control scheme capable of stabilizing the closed-loop dynamics by switching off isolated actuators. Simulation results are presented to illustrate the performance of our tools.
We address the problem of attack detection and isolation for a class of discrete-time nonlinear systems under (potentially unbounded) sensor attacks and measurement noise. We consider the case when a subset of sensors is subject to additive false data injection attacks. Using a bank of observers, each observer leading to an Input-to-State Stable (ISS) estimation error, we propose two algorithms for detecting and isolating sensor attacks. These algorithms make use of the ISS property of the observers to check whether the trajectories of observers are `consistent with the attack-free trajectories of the system. Simulations results are presented to illustrate the performance of the proposed algorithms.
We address the problem of state estimation and attack isolation for general discrete-time nonlinear systems when sensors are corrupted by (potentially unbounded) attack signals. For a large class of nonlinear plants and observers, we provide a general estimation scheme, built around the idea of sensor redundancy and multi-observer, capable of reconstructing the system state in spite of sensor attacks and noise. This scheme has been proposed by others for linear systems/observers and here we propose a unifying framework for a much larger class of nonlinear systems/observers. Using the proposed estimator, we provide an isolation algorithm to pinpoint attacks on sensors during sliding time windows. Simulation results are presented to illustrate the performance of our tools.
108 - Biqiang Mu , Tianshi Chen 2017
Input design is an important issue for classical system identification methods but has not been investigated for the kernel-based regularization method (KRM) until very recently. In this paper, we consider in the time domain the input design problem of KRMs for LTI system identification. Different from the recent result, we adopt a Bayesian perspective and in particular make use of scalar measures (e.g., the $A$-optimality, $D$-optimality, and $E$-optimality) of the Bayesian mean square error matrix as the design criteria subject to power-constraint on the input. Instead to solve the optimization problem directly, we propose a two-step procedure. In the first step, by making suitable assumptions on the unknown input, we construct a quadratic map (transformation) of the input such that the transformed input design problems are convex, the number of optimization variables is independent of the number of input data, and their global minima can be found efficiently by applying well-developed convex optimization software packages. In the second step, we derive the expression of the optimal input based on the global minima found in the first step by solving the inverse image of the quadratic map. In addition, we derive analytic results for some special types of fixed kernels, which provide insights on the input design and also its dependence on the kernel structure.
This paper considers optimal attack attention allocation on remote state estimation in multi-systems. Suppose there are $mathtt{M}$ independent systems, each of which has a remote sensor monitoring the system and sending its local estimates to a fusion center over a packet-dropping channel. An attacker may generate noises to exacerbate the communication channels between sensors and the fusion center. Due to capacity limitation, at each time the attacker can exacerbate at most $mathtt{N}$ of the $mathtt{M}$ channels. The goal of the attacker side is to seek an optimal policy maximizing the estimation error at the fusion center. The problem is formulated as a Markov decision process (MDP) problem, and the existence of an optimal deterministic and stationary policy is proved. We further show that the optimal policy has a threshold structure, by which the computational complexity is reduced significantly. Based on the threshold structure, a myopic policy is proposed for homogeneous models and its optimality is established. To overcome the curse of dimensionality of MDP algorithms for general heterogeneous models, we further provide an asymptotically (as $mathtt{M}$ and $mathtt{N}$ go to infinity) optimal solution, which is easy to compute and implement. Numerical examples are given to illustrate the main results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا